
I f CO.','

AD-A227 852

CECOM

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Distributed Issues for Ada
Real-Time Systems

CIN: C02 092LA 0013 00

23 July 1990 OTIC
S ELECTEum&

OCT 11 I i

Approved Imw Puhbc MUa"
Diutrbufion Uaa1*sG

REPORT DOCUMENTATION PAGE 1 M
pta, Now" % %w ra. 8.wuu w., . b sew 0 N= I . ,1 ,. . ." tI W W r .,i-q "m s-- P000- No

"~W~ om n- w ow ratwv ' weP amm o ofYI -nw "u bumu "Mi N""W a" GW mem of " 0"om0 k
mub ~ ~ HON6UN~f beftum~ &. Drem. Owie onU wo 12 " Mm Dftf mufwo, bib.t. 204, fl VA

wo~~~N Oncee A*"on ~L Ofte of U&wfaft n -upw ItW ho, D~C 20

1. AGENCY USE ONLY (L/. W) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

23 July 1990 Final Report

4. TrTLE AND SUBTrLE S. FUNDM NUMBERS

Distributed Issues for Ada Real-Time Systems MDA 903-87- C- 0056

S. AUTHOR(S)

Thomas E. Griest
7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8. PE RF:ORMtNG ORGANIZATION

REPORT NUMBER

Lab Tek Corporation
8 Lunar Drive
Woodbridge, CT 06525

P. SPONSORING/M NTORING AGENCY NAME(S) AND ADORESSES) 10. SPONSORINGIMOWNTORING AGENCY
REPORT NUMBER

U. S. Army HQ CECOM
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBU TOKlAVA1LABLrTY STATEMENT 12t. D!STRIBL'K N CODE

STATEMENT A UNLIMITED

13. ABSTRACT (.rimu.wrn200 woe5)

-0 This work addresses an approach to reduce the complexity of distributed systems by
extending the standard Ada tasking model to handle the distributed processing and by introducing
a failure model for reliability issues. It uses software developed in a previous CECOM research
project, the Border Defense System (BDS) distributed demonstration application, tha addressed
the performance benefits that could be gained by the distribution of real-time Ada svsterns. To
achieve increased performance, a new approach to improving parallel execution was studied. The
approach was to create a data structure consisting of an array of tasks and distribute the elements
of the array across a set of processors. Performance benefits are then achieved as a function of the
available processors. A simple failure model appropriate for a class of/applications which can
tolerate interruptions in service for up to one second was introduced. /.

,.SUP-ECT T RMS /-----1--. NUMBER D; PAGESK 309

ADA, REAL-TIME, DISTRIBUTED SYSTEMS, FAULT TOLERANCE RiE. P $CODE

17. SUY CLASSIF r-W, 1 SECURrYCLA'SIATKDN I &. SCU;TY C iAS .r' LIMrTATrJN0 ABSTAC
Oc REPORT I OC THlt PAGE 1Or ABSTRACT
UNCLASSIFIED 7 -UNCLASSIFIED UNCLASSIFIED UL

h7SN 7&-i-1283-550D tnac0r 1 (sv21;-

DISTRIBUTED ISSUES PROJECT

FINAL REPORT

PREPARED FOR:
U.S. Army HQ CECOM

Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

PREPARED BY:
LabTek Corporation

8 Lunar Drive
Woodbridge, CT 06525

IDATE:
1 13 July1990

I
The views, opinions, and/or findings contained in this report are those of the
author and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.I

EXECUTIVE SUMMARY

The use of distributed systems to obtain gains in system throughput and reliability is

expected to continue for the foreseeable future. These systems provide substantial benefits

in performance and fault tolerance at the expense of significantly increased complexity.

This work addresses an approach to reduce the complexity of these systems by extending the

standard Ada tasking model to handle the distributed processor and reliability issues. It

uses software developed in a previous CECOM research project that addressed the

performance benefits that could be gained by the distribution of real-time Ada systems.

The Ada tasking model is already reasonably well understood from a uniprocessor point of

view but it is currently not defined to support characteristics of distributed systems.

However, by taking advantage of the same model for distributed systems, fewer new

concepts need to be introduced. This reduction in concepts results in a less complex and

more flexible system. To achieve increased performance, a new approach to improving

parallel execution was studied. The approach was to create a data structure consisting of an

array of tasks and distribute the elements of the array across a set of processors. This task

array provides the ability to achieve performance benefits as a function of the available

processors.

The Ada tasking model is currently silent on failure semantics. This study introduces a

simple failure recovery mechanism appropriate for a class of applications which can tolerate

interruptions in service for up to one second. Enhanced fault detection and recovery logic

have been added to demonstrate the ability to continue operation in the presence of some

hardware failures. To improve the flexibility of the system configuration, a new runtime

interface has been established to allow dynamic reconfiguration at runtime.

Table of Contents

1. Introduction .. 1

2. Com plexity of Distributed System s 2

3. Use of the Ada Tasking M odel for Distributed System s ... 4

4. Responding to Failures in a Distributed System .. 6

5. Demonstration Application ... 8

5.1 Enhancements to the Demonstration Application Software 9

5.2 Improvem ents to the Distributed Runtime .. 10

5.2.1 Distribution Control Details ... 12

6. Perform ance Characteristics ... 15

6.1 Benchm ark Results ... 17

6.2 Perform ance Gains ... 22

7. Design of System s Using Distributed Ada ... 25

7.1 Hardware Considerations .. 25

7.2 Software Considerations .. 26

7.3 Differences Between Distributed and Uniprocessor Implementations 28

8. Lim itations of the Distribution Support ... 31

8.1 Task Identification ... 31

8.2 Code Replication .. 32

8.3 Network Error Recovery .. 32

9. Com piler and Runtime Problem s ... 34

10. Sum m ary .. 36

11. References .. 38

12. Appendix A - Border Defense System Ada Source Code ... 39

13. Appendix B - Distributed Runtime Source Code ... 199

-i

I
Table of Contents

Figure 1. Software Subsystem s ... 11

Figure 2. Top Level BDS Design ... 19 I
I
I
I
I
I
I
I

Accession For I
NTIS GRA&I
DTIC TAB D
Unannounced
Justificatlon

By_______
Distribution/-
Availability Codes

Avall and/or
Dist Speoal

I

I

Distributed Issues Final Report

1. Introduction

This paper describes the results of a project to investigate issues in distributed Ada

programs. It is based on an earlier demonstration project done by the U.S. Army, Center for

Software Engineering at Fort Monmouth, NJ[1]. It goes beyond that initial work in two

important areas: using task arrays to expand parallelism; and improving the benefits of

program distribution beyond performance gains by providing support for fault tolerance.

The earlier project had statically allocated tasks to a processor, and each task was unique,

based on a uniprocessor design. The new approach of using task arrays supports the

capability to spread the execution of independent iterative operations across a distributed

system., The distributed runtime was re-implemented to provide much more flexible

reconfiguration capabilities. This made it possible to measure performance gains over a

wider set of configurations. The increased flexibility also made it possible for the system to

reconfigure under fault conditions and continue operation in a degraded mode.

This paper briefly outlines the application and its key performance characteristics used to

demonstrate use of the distributed Ada techniques. Improvements to the application are

mentioned, as well as enhancements to the distributed runtime system. Performance

benchmarks were done to assess the benefits obtained by distribution of a single Ada

program over a network of three Intel 80386 processors connected by an Ethernet. The

results of the benchmarks were analyzed to explain how the system reacted under various

processing loads and system configurations. These findings were further analyzed to identify

design considerations which can be used to improve performance for other distributed

applications.

-1-

I
Distributed Issues Final Report

2. Complexity of Distributed Systems

Systems which are distributed tend to be much more difficult to develop than a single

processor implementation of the same problem. This is due to several contributing factors. I
True parallelism creates new scheduling problems and new ways in which resource

contention can occur within systems. Distribution introduces the significant new

requirement of communication. This inter-processor communication is often at a much

higher data rate and less predictable than typical communication with external devices. For

this reason, buffering and synchronization become critical design considerations. I

Adding to the problem of distributed real-time systems is the issue of maintaining a common

sense of time among all of the processors. Application software often becomes involved in

the process of keeping track of time and adjusting for time differences among processors.

This burden generally does not exist in uniprocessor applications. 3
Finally, distributed systems generally are constructed in an ad-hoc manner, creating a vast

number of dissimilar architectures. This effectively eliminates the mass market necessary to

encourage tool developers to support distributed systems. The result is that tools for

developing distributed systems are usually custom made and frequently lacking in capability.

Horror stories of developers using dozens of separate in-circuit emulators, each with their

own console to test distributed systems, are common. Thus the nature of distributed systems

simply adds to the difficulties of understanding and solving the complex problems which

arise during development.

The benefits of distributed systems are found in essentially three fundamental 3
characteristics: performance, physical separation, and fault tolerance. It is nearly always the

case that the price/performance ratio of computer hardware favors many lower cost

I
-2-

I

Distributed Issues Final Report

processors over a single higher performance processor. Furthermore, the ability to handle

interrupts by distributed processors reduces the number of context switches (and associated

overhead) required. This often results in better response time and overall performance by

having several lower cost processors concentrate on a single task rather than having one high

cost processor switching among many tasks.

The physical separation of processors provides the ability to have processing resources in

close proximity to isolated system hardware. This is often necessary to reduce the wiring and

provide a degree of autonomy between subsystems. This can be extremely important in

situations which may suffer from localized damage. Similarly, the additional processors

make it possible for continued operation in the presence of processor failures. Eliminating

all situations where a single component failure will result in system failure is a common

axiom of fault tolerant systems.

The growing number of distributed systems in use is evidence to the fact that the benefits of

these systems are significant even though there is additional complexity. Techniques that

reduce the complexity of these systems would further enhance their attractiveness and are

likely to lead to more cost-effective systems and widespread use of fault tolerant computing.

-3-

I
Distributed Issues Final Report 1

3. Use of the Ada Tasking Model for Distributed Systems

Several approaches are used to support cooperative processing on distributed systems. Most

frequently, a message-based mechanism of communication is defined to allow a program on

one processor to interface with programs on other processors. These messages are generally

developed in an application-specific way with a wide variety of characteristics and

requirements. Other techniques include some type of formalized remote procedure call

approach with surrogate tasks to execute the procedures that are remotely invoked.

The approach used on this demonstration was to utilize the Ada tasking model of

concurrency for all local and remote communication between parallel threads of execution. I
This approach to concurrency is often referred to as "Distributed Ada" and has a number of

advantages to other approaches. Among them are:

1) The ability of the compiler to check interfaces between physical processors. I

2) A consistent approach to parallelism - all concurrent activities are expressly stated I
with a consistent formal mechanism making the system less complex.

3) Re-configuration is facilitated, since the interface between communicating tasks on

a processor is the same as that among separate processors, thus allowing tasks to be n

migrated more easily.

4) Consistency helps to maKe distributed testing and debugging more easily supported

by compiler implementers. Ad hoc approaches make debugging tools prohibitively I
expensive and generally not as complete.

I
I

-4-

I

Distributed Issues Final Report

By utilizing the Ada tasking model, the underlying details for remote communication and

maintaining a consistent sense of time are hidden. Since there is a stable model to support,

this also creates the possibility for system vendors to provide hardware that is optimized to

support distribution of Ada tasks.

The benefits of providing a well understood, uniform approach to concurrent programming

should not be underestimated. The ability for developers to have a clear understanding of

how their distributed system interacts is essential in lowering the costs and improving the

reliability of these systems. From this pcint of view, using the Ada tasking model for

distributed communication and synchronization provides the best opportunity for

consistency when programming in the Ada language.

I
Distributed Issues Final Report I

4. Responding to Failures in a Distributed System

The potential to tolerate processor failures is a side-effect of having a distributed system.

Frequently this potential is not realized due to the complexity of supporting the detection,

isolation, and recovery mechanisms required for fault-tolerant processing. However, safety

or mission-critical applications require fault-tolerance and therefore must accept the

additional complexity.

The requirements for fault-tolerance can vary from system to system, and the corresponding

implementation to support those requirements is substantially different. One of the critical

factors is the time in which operations are allowed to be interrupted. Systems that cannot I
tolerate any interruption in service must perform calculations redundantly and decide which

results to accept. More typically, systems are allowed to fail for a few seconds providing that

they can come back in service correctly. For these systems, migration of services from failed 3
processors to operational ones is often sufficient to maintain acceptable performance.

The degree to which information is lost (and/or corrupted) during failures also impacts the

architecture of the system. The use of stable storage techniques to prevent loss of data is a

common approach to continue in the presence of processor failures. This approach

checkpoints data to a stable storage area (usually made from redundant memory modules) I
which is accessible from other processors. If one of the processors fails, another processor

can generally carry on from the last checkpoint made by the failing processor. Obviously the

amount of time lost due to a failure has a direct relationship on how frequently checkpoints

must be made. On the other hand, preventing corruption of data depends on detecting the

faults early and preventing the errors from propagating into other portions of the system. I
This technique is often referred to as establishing "fire walls".

I
-6-l U

Distributed Issues Final Report

Most failures can be detected by comparing the results of redundant operations, the use of

check codes in data, or by using timers to insure that operations complete in their required

times. Depending on the type of fault and its detection scheme, the recovery may be as

simple as selecting the most likely value based on a majority vote of redundant

computations; or it may be a complex process of retries and judgments made on confidence

levels in components associated with the failure. The diversity in fault-tolerance

requirements and the associated techniques to support them precludes a standard approach

to fault-tolerant applications. Instead, flexibility for designers is necessary to allow the

method of support to closely match the requirements. For this reason, the demonstration

system includes the ability to have application software interface to the configuration control

software. (More information on Vow faults are detected and handled in the demonstration

system is provided at the end of section 5.2.) It is clear that many applicatiops will require

the ability to have the logic to support fault-tolerance shared between application-specific

software and general fault-tolerance software in the runtime.

-7-

Distributed Issues Final Report

5. Demonstration Application I

To adequately demonstrate the effective use of distributed processing, a real-time

application was required to provide a test case program. A -.jnthetic application titled the

"Border Defense System (BDS)" which combines target tracking, rocket guidance, and

graphics was developed to provide a suitable real-time test. A simulator was included to

provide rocket and target motion. I

The main characteristics of the BDS are summarized below:

- Hard Deadline Driven application: failure to meet timing requirements will result in
mission failure.I

- "Processor in the Loop" flight control with dynamic target tracking.

- Complex problem, with interac - among several different functional areas:

Message Reception (from Sensor Interface and Airborne Rockets)

Multiple Target Tracking and Prediction

Multiple Rocket Tracking and Guidance I
Real-Time Graphics Updates

Real-Time Operator Interface (peak data rate of 500Hz)

- Using current technology: 32-bit Microprocessors (80386-16MHz) I
- Initially a separate program was designated for the cimulator, however it was
temporarily incorporated into the system as additional tas,.s and placed on a separate
processor using the distribution technique.

- All application concurrency is expressed using the Ada Tasking Model (Rendezvous) Iexclusively.

- The program consists of approximately 6700 Ada LOC contained within 51
compilation units. A copy of the BDS source code is provided in Appendix A.

- The distributed runtime is implemented with 5242 assembly language statements (for
compatibility with the vendor runtime) contained in 10 modules. A copy of the
distributed runtime source code is provided in Appendix B.

I
-8- I

Distributed Issues Final Report

All calculations for both the rockets and targets are done in three dimensional space,

however the target simulator currently maintains a constant altitude (Z=0) for the target

motions. Each of the aimpoint calculations are computed every lOOms for all of the rockets

in flight. On the 16MHz Intel 386 processor the computations currently require

approximately 6ms per rocket.

5.1 Enhancements to the Demonstration Application Software

In addition to the fault tolerance and distributed processing capabilities, the demonstration

software was enhanced in two ways. First, the rocket simulation algorithms were made

much more realistic (and therefore complex). Second, the flight control system was

redesigned to be oriented towards a realistic feedback system, that is, the software adjusts

the rocket flight based on the effect of previous flight control commands. Previously, the

rocket simulator made instantaneous flight corrections rather than corrections based on

normal accelerations. This allowed a guidance routine that simply aimed the rocket at the

target. A side effect of the feedback approach is an increased sensitivity to (ie. lack of

tolerance for) incorrect tracking of the rocket motion. Errors can occur during overload

situations where rocket reports can be lost. When this does happen, the rockets become

unstable and their flight paths become very erratic.

Accuracy was improved by utilizing 32-bit fixed point types throughout most of the trajectory

calculations rather than 16-bit fixed point. Custom fixed point routines were developed that

provided substantially better performance than those in the native runtime system which

were designed for a 16-bit machine. The rocket guidance equations now utilize 3rd-order

processing, which is required to provide the desired accuracy. To provide some insight into

what processing is done for rocket guidance, the following computations are performed for

each rocket update:

-9-

I
Distributed Issues Final Report

1) The relative (closing) velocities and accelerations of the rocket/target pairings are

computed and an estimated impact point is predicted.

2) The rocket's desired velocity vector is then computed and compared to the current

velocity vector.

3) Based on the velocity differentials, the desired acceleration is compared to the

current rocket acceleration. This provides a desired change in acceleration which is

then used to determine the adjustment required in the rocket's attitude.

4) The flight profile is smoothed by integrating the attitude adjustment over a period,

which is computed as a function of estimated "time-to-impact". This reduces

"overshoot" of the glide slope and had a major beneficial effect on the rocket accuracy.

5.2 Improvements to the Distributed Runtime 3
Several major changes were made to the underlying distributed runtime. In general, the 3
changes can be classified as enhancements to the configuration flexibility of the system. In

particular, the system now is capable of dynamically altering the configuration during system 3
execution. Figure 1 (on the following page) shows the subsystems that make up the entire

program which is replicated on each processor. It is shown as being layered from the top I
application code down through successive levels of abstraction. Conversely, control is 3
passed up through the levels towards the application. Upon initialization, control is given to

the System Configuration Setup & Control module which passes control to the distributed 3
runtime. It in-turn transfers control to the vendor runtime which elaborates and activates

the application software. I

I
I

-10- I

Distributed Issues Final Report

Sof- ware Subsystems

n~-1 r--

B SIMULATOR

VENDOR RUNTIME

DISTRIBUTE]

RUNTIME

Network
F ilure DetectioniL

SYSTEM COINFIGURATIOIN

SETUP & COSNTRO]L

Configuraton InterFace

Figure 1. Software Subsystems

-11-

Distributed Issues Final Report

Application subprograms request service from the vendor runtime which passes the service

request to the distributed runtime. Using a task directory built by the System Configuration

Setup & Control module, the distributed runtime determines if the service involves

distributed resources. If not, control is returned to the vendor runtime. If the service does

involve distributed resources, the distributed runtime carries out the service using its own I
tasking primitives and the Network Services module.

The Network & Failure Detection module is capable of detecting communication errors or

the apparent loss of a processor by using timers with acknowledgement messages and a I
"heartbeat" mechanism. This mechanism monitors activity from each of the processors. If

no activity occurs within a specified period or an acknowledgement is not returned in time, a

failure condition exists and failure recovery is initiated. Failure recovery essentially stops

application processing and returns control to the System Configuration Setup & Control

module. I
5.2.1 Distribution Control Details 3
Each processor initializes the underlying hardware based on what is available in the

machine. The Ethernet hardware contains a unique network station address (in Read-Only

Memory) which is then used in a table look-up to determine the logical processor ID. The I
processor ID is then used to determine which processor is the Master (controlling) CPU and

which arc the Slaves. The Master is distinguished from the Slaves in that it is responsible for

the distributed system Configuration Interface and the system-wide synchronization during

start up. I
The Master processor prompts the user through a menu system which allows configuration

of system parameters. These parameters include:

I
- 12-

I

Distributed Issues Final Report

the maximum number of rockets;

the maximum number targets;

which (of four possible) configurations to use; and

enabling automatic reconfiguration.

If automatic reconfiguration is enabled, a delay may be selected to allow a user to see the

error condition for five seconds.

Most of this information is made available to the application via a distributed runtime

interface package. For example, it is possible for an application routine to determine if it is

running on the Master CPU by testing a boolean variable in the interface. This information

can be used by the main program which is activated on all processors to perform machine

specific operations. In the case of the BDS it is used to control initialization of the operator

interface which only runs on the Master CPU. In addition, the number of Rockets and

Targets, and the size of the configuration specific task array is made available. In some

sense, these variables can be thought of as parameters to the main program, similar to many

host-based Ada program invocations where the command line is provided to the application

program as a parameter to the main subprogram. One important distinction from main

program parameters is that the runtime package interface is available during the elaboration

of other application packages. This allows the size of non-static objects, such as the

constraints of the task array, to be based on configuration information.

The configuration selected during setup determines two important aspects of the distributed

system: where the tasks are to be resident and how many tasks are to be allocated in

application task arrays. Since the same code is present on all processors, a directory is used

to determine where they are to be located. The tasks are effectively made remote by

suspending them during their normal activation process. A future enhancement could be to

-13-

!

Distributed Issues Final Report 3
add a "self-sizing" mode that would have the master processor search for availableI

processors on start up and after failures and utilize as many as are available.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-14- I

Distributed Issues Final Report

6. Performance Characteristics

The BDS system has been tested to execute on one, two, and three processor configurations.

When distributed onto two processors, the simulation tasks run on the second processor.

When the third processor is added, the size of an unconstrained task array is increased from

one to two, and the second task element of the array is located on the third processor. These

tasks in the array divide up the work load of computing the rocket guidance equations.

The performance of the system under different processing loads was studied by collecting

timings which reveal the ability of the system to meet the lOOms deadline for computing the

next rocket guidance command. A significant portion of this computation is the time it takes

to compute the individual aimpoints. This was measured to be approximately 6ms, but

varies based on the actual values of the variables in the equations. The variation is due to

the algorithm used for square-root which is iterative and will terminate when the current

value is known to be within an error bound; and because the multiply and divide machine

instructions vary in execution time.

Two important aspects of the timing analysis are the relationships among tasks and the

ability to achieve performance gains even with these inter-dependencies. To illustrate this

point, a brief description of the sequence of activities for rocket control must be presented:

1) Each rocket control cycle starts with the reception of new rocket flight information.

This arrives during a rendezvous with a report buffer task which relays the information

from the simulator. Normally, the control task is suspended while waiting for the

buffer task to rendezvous, indicating the presence of a new rocket report. When the

report arrives, it is provided to the control task and it begins the cycle of computation.

-15-

I
Distributed Issues Final Report

2) The first part of the computation is a correlation step where the current report is

correlated to previous reports to create a tracking history. New rocket launches are

detected and their histories are initialized. Also, rocket detonations are detected and

they are marked as destroyed. Current counts of active and destroyed rockets are

maintained and passed on to a status task which updates the screen statistic values. I
During the correlation processes, a "move" list is generated for updating the rocket

symbol positions on the display.

3) Once the correlation has completed, the guidance tasks are given the rocket and

target histories which are used to generate the new trajectory data. The guidance

tasks are then allowed to run through the trajectory calculations to produce a new

aimpoint for each rocket.

4) The control task continues to run in parallel with the guidance tasks after providing

them with the information they need. It takes the "move" list generated during the

correlation and provides it to the display task. U
5) The control task then searches the target list to select the next ideal target if the

automatic firing mode is selected and there is an available rocket. (The automatic

firing mode indicates that the BDS is to select the next target rather than having the I
operator select the next target.)

6) The control task then awaits completion of all guidance computations. When the

new aimpoints are provided to the control task, it then rendezvous with a guide buffer I

task which relays the guidance message to the rocket simulator. This completes the

timed cycle of interest.

I
I

-16- I

Distributed Issues Final Report

Note that the guidance tasks form a task array which is only one element in size for the one

and two processor configurations, but expands to two tasks in the three processor

configuration. This distributes the work load of aimpoint computations among two

processors and allows the system to support additional simultaneous rocket flights without

missing the measured lOOms deadline.

6.1 Benchmark Results

All measurements were taken with 40 active targets. During normal conditions, rocket

accuracy was observed to be nearly 99 percent; that is, around one (1) target missed for

every 100 rockets expended. In overload conditions where the deadline was missed, rocket

accuracy dropped to nearly 0 percent resulting in every rocket missing. The BDS consisted

of 11 conventional tasks, an unconstrained array of guidance tasks, and the main program.

The entry calls made between the tasks are shown in Figure 2. For specific details of system

operation, refer to documentation included in the application source code which is provided

in Appendix A. A general description of the tasks are provided below (in decreasing priority

order).

In-Char task Accepts input from the mouse device (mouse interrupt task).

Save task Buffers mouse data for controlling reticle updates.

Display task Performs all graphics display updates.

TrackData task Buffers target position information between the target tracker and

the rocket control task.

-17-

I
Distributed Issues Final Report

ReportBuf task Buffers rocket position reports from the simulator to the rocket

control task (part of the simulator). I
GuideBuf task Buffers rocket guidance commands from the rocket control task to

the simulator (part of the simulator). I
I

Rock-Sup task Implements the rocket flight simulation (part of the simulator). I
TargSup task Generates and moves simulated targets (part of the simulator). I
Control task Provides overall control for rocket monitoring and flight updates.

Guidance task Called by the rocket control task to compute flight guidance

aimpoints (this is an array of tasks). I
Track task Produces target tracking information for the display and rocket

control tasks.

I
Update task Updates the statistical status information on the screen. U
Bds procedure Main program used to initialize system operation.

I
I
I

-18-

I

Distributed Issues Final Report

BPD Top Leves Design

math status Misc,
Ton Update Data
Arc Ton ' 7 TroseCt
Sqr-t

Engage
.Gr id _t o _ et
Machine
Shapes

Youse ~aeOU~eCon~?g

Interrupt BufFer I

Rocket Target c

Control r a p h c s
R/cket D;splaY //Rocke t- Y,

Trac< -:, to

SimuLate

RDL Sensor

/ cSk /

Dotted Line 7
Indicates Entry Cart

Figure 2. Top Level BDS Design

-19-

I
Distributed Issues Final Report

The measured time is the period that begins when the rocket report becomes available to

the control task and ends when the guidance message is provided to the simulator. The

allowable time for this has been established as lOOms based on the rocket update

characteristics. Successive measurements were taken increasing the number of rockets until

either the deadline was missed, or until the number of rockets reached 20. The tested I
configurations are as follows:

I Processor all tasks are resident

2 Processors : the simulator tasks are on the 2nd CPU I
3 Processors : the simulator is on the 2nd CPU, the second

guidance task is on the 3rd CPU

of Processors # of Rockets Time to complete 100ms Cycle

1 5 ' ms 3
1 10 105 ms

2 5 38 ms
2 10 77ms
2 15 118 ms

3 5 41 ms

3 10 73ms

3 15 79 ms

3 20 90 ms

Extrapolated Saturation Points for Each Configuration: 3
Processors # Rockets

1 9

2 13

3 22

Several observations on the benchmark results can be made. Because the simulator does

not participate in the rocket control calculations, and the system is lightly loaded during the

control of up to 5 rockets, there is no performance benefit in increasing from I to 2 CPUs 3
I

-20- I

Distributed Issues Final Report

with only 5 rockets to control. When the number of rockets rises to 10, the dual-CPU system

shows a substantial benefit over the single-CPU configuration because both the control

computations and simulator computations increase as a function of the number of rockets.

The dual-CPU configuration misses its deadlines when more than 13 rockets become

airborne. This is roughly a 44% gain in the number of rockets supported with the

single-CPU configuration. The three-CPU configuration is expected to miss its deadlines

when more than 22 rockets become airborne. This is roughly a 144% gain over a

single-CPU and a 69% gain over the two-CPU configurations. The performance benefits

are not linear because only segments of the application are being distributed, and because

precedence relationships among the tasks restrict full processor utilization.

Not measured in the benchmarks is the performance of lower priority tasks which are much

more substantially imr acted during increased processing load. The low priority tasks are the

first to relinquish the processor and therefore will suffer first in overload conditions. For

example, the task responsible for updating the display statistics begins to starve when only 3

rockets are launched on the single-CPU configuration. In comparison, it continues to run

(although at lower frequency) even during overload conditions on the dual and triple

processor configurations. The extended life of the lower priority tasks is primarily due to the

additional "background" cycles available on the multiple CPU configurations.

It is also due to the I/O blocking time during network communications. That is, while the

high priority task waits for access to the network resource, it is blocked from exe cution which

allows lower priority tasks to run. This is one interesting aspect of a distributed system that

is not present in shared-memory multiprocessors or single processors. This 1/O blocking

time has the effect of transferring some execution time directly from high-priority tasks

(performing network communications) to other tasks on the system. To the extent that the

-21-

I
Distributed Issues Final Report

I/O blocking time exceeds the processing time required by middle priority tasks, or if the

middle and high priority tasks block in contention for the network, then very low priority

tasks can be allowed to run. This phenomenon is observed in the demonstration project by

the low priority task updating the status display even while high priority tasks miss their

deadlines in the multiple processor configurations. The I/O blocking time during rocket I
"get-report" and "put-guidance" communications is estimated at under 2ms per lOOms cycle.

This 2% CPU time is sufficient to prevent starvation in the low priority tasks.

6.2 Performance Gains n

A common objective discussed for parallel systems is to achieve "scalable" increases in I
performance. This term implies that when processing resources are added, the "useful'

processing increases by a constant factor of the number of processors. For example, for a

scale factor of 0.9, then if five times the processors are used, this will result in 4.5 times the 3
useful processing that will be accomplished. This type of measurement is typically applied to

computations where the time the computation takes place is only relevant because -omeone

is waiting for the final output of a very large set of computations. However in real-time

systems, consistent meeting of short-term deadlines is the measure of performance. For this

reason, the conventional sense of "scalable" performance is not totally appropriate.

A real-time system that always meets its deadlines with one processor will not perform

better when adding additional processors. It is much more typical that a basic accuracy

specification must be met and no benefit is gained by exceeding it. In these cases just

meeting the deadline is as good as meeting the deadline in half the required :ime. The only

benefit is the excess capacity which allows future expansion. However, there is a class of I
algorithms that increase their accuracy based on the amount of time available to execute

which might benefit from additional processing resources. So except for reliability concerns

I
-22- I

Distributed Issues Final Report

and special purpose algorithms, performance can and often does get worse because of

communication overhead.

On the other hand, when processing demands limit the capacities of an embedded system,

there is potential for substantial benefits to be gained by using additional processors. This is

because there are often fixed and variable components to the processing required for system

operation. In the BDS, fixed components include the status update, rocket control and

report message formatting and transmission, sensor message reception, graphics reticle

motion, and runtime overhead (primarily context switching). All of these operations did not

vary with the number of targets oi rockets supported. Since the additional processing is

applied to the variable portion, the increase in system capacity can greatly exceed the

increase in processing resources. We refer to this increase in performance as "leveraged

performance". In particular, if a system is 70% utilized due to fixed processing

requirements, only 30% remains to perform the functions identified as the principal system

mission. This 30% can be highly leveraged by adding an additional processor to achieve a

nearly 300% increase in system capacity. This characteristic is not clearly evident in the

demonstration benchmarks because the tests were taken without the user interface being

active and because the target support processing is quite low. The user interface includes

moving the reticle which can increase system load by up to 20%, but without a mouse

simulator to provide constant simulated motion, it was decided to test the system without the

effects of the user interface. The result is that the fixed processing for the demonstration

benchmarks was rather low.

The benchmark results are also somewhat biased by a decision to locate only the simulator

tasks on the second processor. This resulted in considerable idie time on the second

processor which could have been used to do additional rocket calculations. The reason for

-23-

I
Distributed Issues Final Report

the decision was to insure the accuracy of the simulation by making sure that nothing

interfered with the simulator's processing. A similar effect was created on the three-CPU

configuration by choosing a processing balance between the two guidance tasks that was not

optimal. Ideally, the two distributed computations would complete at roughly the same

time, but the balance selected caused one to finish earlier than the other. The incorrect I
balance was made because of uncertainties in all of the timing factors that make up the

processor loading. Further work is necessary to facilitate an automatic method of

determining the optimal configuration for performance.

Thus this study identified two major beneficial factors when considering the use of

additional processing resources:

1) When there is a large processing requirement for fixed overhead operations and the

addition of processing resources can be applied to the mission-specific processing,

which is otherwise limited by the available resources, there can be a leveraged benefit

to the system capabilities.

2) When there is the potential for several independent sets of calculations to be

performed, the performance increase can be effectively spread over a moderate

number of CPUs, limited by the capacity of the network. I

The ability to scale-up to a very large set of processors was not investigated by this project.

It is believed that the current network architecture would severely restrict such a scale-up

due to network contention. I

I
I1

-24-I

Distributed Issues Final Report

7. Design of Systems Using Distributed Ada

7.1 Hardware Considerations

There are several aspects of system design that impact the utility of the system. Experience

has shown that the implementation of distributed systems must be done with the expectation

that the hardware will provide reasonable support for fundamental services. These services

include:

1) The ability to transmit urgent information in a timely fashion. This requirement

usually implies that messages can be prioritized and that the priority is observed in any

situation where the potential delay exceeds the allowable allocated time.

2) The ability to broadcast, and later determine that all recipients obtained the

message.

3) Sufficient hardware buffering support so that incoming messages will not overrun,

resulting in the need for re-transmission.

4) Error detection (or correction) to provide indication of successful message transfer

immediately (i.e. within 10 us) by the hardware.

5) The ability to synchronize among the processors.

To a large extent, the network topology has an influence on the real-time response and

priority of services provided. The most common network topologies include: Rings,

N-dimensional Hypercubes, and Buses. This demonstration project utilized a standard bus

topology network - Ethernet, because of its availability and cost. As discussed in a prior

report (1], Ethernet is not ideal for real-time use since there is no provision for hardware

-25-

I
Distributed Issues Final Report

generated acknowledgements and because access to the bus is granted on a contention basis.

The contention-based access method is a poor choice for real-time because no provision is

explicitly provided for priority, and two nodes trying to access the medium simultaneously

result in a collision. When this occurs, they both wait a random period and retry later. The

effect of this on congested networks is a queuing order that is often first-in, last-out. This I
results in very high worst-case response times which makes meeting fixed deadlines difficult.

However, in the demonstration project contention was low since bus utilization was kept

below 2%. A more appropriate network for real-time would be either a point-to-point

interconnect or a star topology that provided guaranteed response time to all network nodes. I
7.2 Software Considerations I
The ability to use distributed Ada depends on being able to separate program execution into

tasks that can execute in parallel. For embedded applications, usually a small set of 3
independent tasks are naturally present due to their interaction with external objects. These

objects (like a video display, operator keyboard, or rocket) are independent and operate I
concurrently in the real-world. Their control or monitoring therefore naturally maps to

separate tasks. The order of execution for these tasks is often asynchronous and is dictated

by external events. This type of concurrency is referred to as "natural parallelism". Parallel

execution can also be performed on any independent set of operations that are not ordered.

Typically these are done as sequential or iterative processes because treating each operation n

as a separate task would result in additional context switches. However, applying multiple

processors to the computations can more than compensate for the small overhead of the

additional context switches. This forced parallelism can help to increase the amount of

processors which can be effectively used.

I
I

-26- I

Distributed Issues Final Report

As a design goal, system designers should attempt to reduce interdependency of tasks as

much as possible. Usually this requires detailed knowledge of the application and implies

being able to partition system functions into tasks that have a high degree of autonomy.

Tasks (other than monitors for shared access control) should not be used for activities that

cannot be done in parallel.

Secondly, avoid serialization in the order of task synchronization if possible. For example, if

task A must wait for both task B and task C to provide data, it should not enforce the order

of which task it must rendezvous with first unless they are always guaranteed to arrive in a

particular order. Instead, a conditional rendezvous should be used to prevent unnecessary

serialization of events.

Third, tasks which must reside on a particular processor because of required access to

hardware interfaces should provide the minimum service necessary to support efficient use

of that hardware. This approach provides additional design freedom to locate a greater

percentage of the required processing demands according to communication demands rather

than specific hardware dependencies.

Finally, the software should be designed to operate correctly during overload conditions.

This requires the ability to detect the overload condition, maintain consistency of data, and

(ideally) to support the dynamic load shedding necessary to make good use of the available

processing resources. This last provision is absolutely necessary to continue operation in the

presence of hardware failures, since the loss of processing resources will almost certainly

increase the likelihood of overload conditions.

-27-

I
Distributed Issues Final Report

7.3 Differences Between Distributed and Uniprocessor Implementations

There were two major unexpected differences identified between execution on a distributed

system and a uniprocessor system. The first was mentioned in the performance section and

involves the impact of I/O blocking on high priority tasks. This prevents starvation in low

priority tasks and allows the status display and target tracker tasks to continue to run even

under conditions of very high utilization. This effect was due to the desire to run tasks as

often as possible during non-overload conditions and yet allow the more critical tasks to

obtain the CPU during overload. This may have been avoidable using a more complex I
algorithm to schedule the status and target tracker tasks based on the available time for

them to run.

The second difference was due to a design assumption that made the program erroneous.

During a prototype enhancement of the application, a change was made in the program to

use message sequence numbers in order to detect the loss of successive reports (due to

buffer overwrite during overload conditions). Although the code was made obsolete by

another function and was essentially removed prior to system integration, a seemingly

harmless portion remained which examined the rocket report message. This message was a

task entry "out" parameter from the simulator's report buffer task and it was examined to 3
detect sequence numbers that changed from report to report. By convention, only the first

"N" items in the message are considered valid, where "N" is provided at the beginning of the

message. However the sequence monitoring code did not examine this count before testing

the sequence numbers and assumed that the first rocket position was always valid. In the I
single-CPU configuration, the entry call "out" parameter was passed "by address", and the n

buffer task only updated those records that were active. In distributed configurations, entry

call parameter passing must be done as "copy-in, copy-out" so the data can travel over a

2
-28-

I

Distributed Issues Final Report

network and it operates without regard to the contents of the objects being copied. The

result is that all of the records are updated during each entry call. This had the effect that

the sequence software became confused and rejected messages due to apparent bad

sequence numbers. The root of the problem was due to a dependence on the parameter

passing mechanism used for entry parameters. RM 9.5(6) states that:

"The parameter modes for parameters of the formal part of an entry declaration are the

same as for a subprogram declaration and have the same meaning (see 6.2)."

RM 6.2(5) defines out mode parameters as:

The formal parameter is a variable and permits updating of the value of the associated
actual parameter.

The value of a scalar parameter that is not updated by the call is undefined upon return;
the same holds for the value of a scalar subcomponent, other than a discriminant.
Reading the bounds and discriminants of the formal parameter and of its subcomponents
is allowed, but no other reading.

RM 6.2(7) continues:

"For a parameter whose type is an array, record, or task type, an implementation may
likewise achieve the above effects by copy, as for scalar types. In addition, if copy is used
for a parameter of mode out , then copy-in is required at least for the bounds and
discriminants of the actual parameter and of its subcomponents, and also for each
subcomponent whose type is an access type. Alternatively, an implementation may
achieve these effects by reference, that is, by arranging that every use of the formal
parameter (to read or to update its value) h. (reated as a use of the associated actual
parameter, throughout the execution of the subprogram call. The language does not
define which of these two mechanisms is to be adopted for parameter passing, nor
whether different calls to the same subprogram are to use the same mechanism. The
execution of a program is erroneous if its effect depends on which mechanism is selected
by the implementation."

The essential difference in implementation approach is that when call by reference is used,

only those records that are explicitly assigned a value are altered by the entry call. When

call by copy-in/copy-out, all of the values are altered. In either case it is considered

erroneous to reference a value that is not updated, but in fact the single-CPU application

was doing this. There was no effect in the call by reference implementation, but when the

task became distributed and call by copy was used, the latent error in the software was

-29-

I
Distributed Issues Final Report

activated. The lesson is that erroneous programs are more likely to operate incorrectly on

distributed systems because a different parameter passing mechanism is likely to be used for

composite objects.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-30- I

Distributed Issues Final Report

8. Limitations of the Distribution Support

8.1 Task Identification

The current mechanism for identifying tasks is the task's base priority. This was a

convenient mechanism to use for a number of reasons. First, it is stored in the vendor's

runtime task control block and is therefore available during any runtime call. It can be set

via a pragma in the source code and therefore a unique ID can be associated with each task

type. This approach was selected because it provided an expedient solution to identifying

application tasks to the distributed runtime without modification to either the compiler or

the vendor runtime.

Future versions would obviously use some other field in the control block because this

technique is very limited. One complication is with the handling of task arrays. Since they

are of the same task type, all tasks in an array have the same priority. This problem was

circumvented by leaving sufficient space between adjacent priorities to change the priority of

each task in the array during activation if necessary to make them unique.

Another approach was considered, but rejected because of development time. This

approach was to use an intermediate file produced for a debugger to correlate the actual

name of each task with the execution addresses where the task type is created and the task

object is activated. This information would be combined with the designer's distributed

configuration specification and loaded with the runtime. Since this specification would use

the actual expanded name of each task, the limitation of having only as many tasks as there

are priorities would be removed. During task type creation and task activation, the return

address on the stack during the runtime call provides the execution address and could be

used to identify the task type and object in the configuration specification. This approach

-31-

Distributed Issues Final Report

requires the development of a tool to process the compiler intermediate files, linker maps,

and the distributed specification file. There may be other problems that are not obvious but

the method appears suitable for some applications.

8.2 Code Replication

Currently all of the code for each task must be resident on each processor. In some

applications this is unacceptable since there will not be sufficient memory to support the

entire application on every processor. One approach to reducing this overhead may be to

use subunits for all task bodies and then create a sublibrary with dummy bodies appropriate

for each processor configuration. Linking the program with respect to each sublibrary will I
then produce a load image for that processor configuration. However, some compilation

systems do not allow subunits to appear in any library other than the library in which the

parent unit was compiled. In any case, it would probably be advisable to have a tool which

automatically created the necessary sublibaries and subunit bodies and therefore reduce the

chance of error in generating the individual load images. I

8.3 Network Error Recovery

Each network message is acknowledged which allows transmission errors to be detected,

however there is no provision for re-transmission. The system will simply shutdown and

reconfigure on the first error. This is somewhat severe since re-transmission can usually be I
done without loosing real-time if the acknowledgements are prompt. (Measurements on the

BDS indicated typical acknowledgement times of 400 to 800 microseconds.) The only

complication is saving the data for re-transmission. Currently, transmissions transfer

application variables directly to a single hardware transmit buffer. Once the message is sent,

the buffer is reused and the application task is allowed to continue. There is no provision to

I
-32- I

Distributed Issues Final Report

save the data for later re-transmission. This could be done with very little overhead by

allocating additional space in the hardware buffer for transmissions, however the hardware

in use is configured with only 8KB (kilobytes) of memory and therefore this is not practical.

By expanding the memory to 32KB, or by using system memory and performing an

additional copy, the data can be retained until the acknowledgment is received and the

buffer can be freed.

-33-

I
Distributed Issues Final Report

9. Compiler and Runtime Problems

Considerable effort was spent isolating problems associated with the Ada implementation.

The implementation was an upgrade from the version used on the previous demonstration

project and was far more reliable than that erlier version. Nevertheless because code

generator errors continued to appear, a decision was made to not use optimization for

compilation of many of the units and to greatly restrict use of pragma inline. This noticeably

improved the reliability of the generated code.

Even with these restrictions, two problems were identified during final integration testing.

In one unit where inline was still used, the compiler failed to generate the same (correct) I
addresses for variables which were initialized during package elaboration. These variables

happened to be pointers within a circular queue, and the error would generally go unnoticed

if the values of the memory locations happened to be the same. This was typically the case

during testing since the system memory initialization routine would zero all of memory to

prevent parity errors. However, depending on the contents of memory when the program I
was loaded the system could crash if the two values were very large or not equal to each

other. While single stepping through the program it was noticed that the pointers were

being initialized properly which was the obvious expected source of the problem. However.

during program execution the system would still crash, and the pointers would have invalid

data. Use of the processor's special debug registers to halt on references to data, much like

an in-circuit emulator, helped to track down the problem and realize that two different

locations were being used for the same variable.

The second problem was related to computation of 32-bit fixed point values. When a small I
value is divided by a large value resulting in zero, and exactly one of the operands is

negative, the runtime would incorrectly assume that an overflow had occurred because the

-
-34- I

Distributed Issues Final Report

result was not negative. Instead it was zero, which was also a legal value. This problem was

fairly quickly resolved since it has been noticed in the earlier release of the runtime. It was

fixed by changing the conditional branch instruction to allow for zero results.

-35-

Distributed Issues Final Report

10. Summary

This project demonstrated that the use of distributed Ada can provide increased

performance benefits and fault tolerance for a reasonably complex real-time application.

These benefits can take the form of simply using the parallelism natural in the application or

by expanding the parallelism using task arrays to compute multiple independent

calculations. In particular, the ability to distribute elements of a single Ada object was

demonstrated by distributing an array of tasks to divide up the workload among several

processors.

Task precedence relationships create considerable design difficulties when trying to analyze I
a system for optimal parallel operation. New tools and scheduling paradigms are required

to assist designers in resolving these difficulties. However, techniques do exist to provide

marginal improvements in parallel operation by reducing dependencies and encouraging the 3
judicious use of synchronization primitives. An exai iple of such a technique is the use of

buffering schemes and control variables to de-couple tasks. This technique may require n

detailed knowledge of the application to insure proper execution with the buffering scheme.

The concept of "scalable performance" was discussed, and a more appropriate term for

real-time embedded systems: "leveraged performance" was introduced. This concept

recognizes the limiting factors in real-time systems, and emphasizes the potential of capacity

increase factors greater than one (1) for applications with a substantial portion of processing

dedicated to execution re,,iirements of fixed duration.

A very important potential gain of distributed systems is the ability to utilize the natural n

redundancy in the hardware to achieve increased fault tolerance. Typical embedded systems

have had, and will continue to have multiple processors. The problem of reconfiguring the 3
I

-36- I

Distributed Issues Final Report

system during failure conditions has prevented widespread use of fault tolerance techniques.

Distributed Ada appears to be a good candidate for reducing this problem to a manageable

level for applications which should operate in the presence of failures.

Fault tolerance concerns were examined and a clear need arose to provide an interface

between the fault tolerant runtime and the application. The application must be able to

have some sense of the available processing resources in order to adapt to the configuration.

An example was shown of an erroneous program which failed on the distributed

implementation when it had previously run correctly in a uniprocessor configuration. A

conclusion was drawn that since distributed systems are likely to use both "pass by copy" and

"pass by reference" mechanisms for parameters of composite types, programs which

erroneously depend on the parameter passing mechanism are more likely to fail on

distributed systems.

Finally, compiler reliability still poses a serious problem when trying to obtain the highest

performance possible using complex op,.mizations and language features such as pragma

inline. Mission and safety critical applications should consider the impact of having to

operate without the use of these performance enhancements.

-37-

Distributed Issues Final Report

11. References

[1] CECOM Center for Software Engineering, "Real-Time Ada Demonstration Project",

CIN # C02 092LA 000900, Final Report, delivered by LabTek Corp., May 31, 1989.

I
[2] Reference Manual for the Ada Programming Language, ANSI/MIL Standard 1815A-1983.

I
I

!
I!
I
I
I
I
I
I
I
I

-38- I

Distributed Issues Final Report

12 Appendix A - Border Defense System Ada Source Code

The source code for the BDS system follows in alphabetical order of the unit names

(specifications precede bodies).

-39-

I
Distributed Issues Final Report 3

I
-- % UNIT: Aim Data package spec.

-% Effects: Holds Rocket/Target history information for Guide. -- I
-- % Modifies: Rocket Info is global data and is modified by Guide. --

-- % Requires: Initialization is required and performed by Guide. --

--X Raises: No explicitly raised exceptions are propagated. --

-- Engineer: L. Griest.
--I I
-- PACKAGE SPEC : AimData
--
-- AimData contains the information for Guide necessary to control the

-- rockets in flight. The data is initialized by Guide when the rocket

is taking off from a launch position. Note that curr-nnnn signifies the

most current postion of an object and that lastnnnn signifies the position

-- the object had immediately prior to this interval (assuming no ovcrLoad

-- condition). The prev_nnnn field exists only for rockets and represents

-- the position the rocket had two intervals prior to this one. This field

is used to calculate the velocity of the rocket last interval in all three I
-- axis. This information is not needed for targets.

RATERECTYPE is necessary to provide the accuracy necessary when

calculating accelerations and velocities, particularly at launch times.

-- Modifications Log

-- 89-11-09 : LJG => Original created. !I
with Types; use Types;

package Aim-Data is 3
type RATERECTYPE is record

X : Types.RATETYPE;

Y : Types.RATETYPE;

Z : Types.RATETYPE;

end record;

type ROCKET_ INFOTYPE is record

LASTTARG : Types.POSITIOI'_TYPE;

CURRTARG : Types.POSITION_TYPE;

PREVROCK : Types.POSITIONTYPE;

LASTROCK : Types.POSITION_TYPE;

CURRROCK : Types.POSITION_TYPE;

OLDAIMPOINT : Types.AIMPOINTTYPE;

BOOST PHASE BOOLEAN; -- rocket currently in boost phase?

end record; I

-40- I

Distributed Issues Final Report

type ROCKET_ INFOARRAY is arr-ay(Types.ROCKET_ INDEX_TYPE) of ROCKET_ INFO_TYPE;

ROCKET-INFO :ROCKET_ INFOARRAY;

end Aii-Data;

I

Distributed Issues Final Report

--x UNIT: Aimpoint function spec. I
-- % Effects: Compute new aimpoint based on acceleration requirements. --

-- % Modifies: No global data is modified. --

--% Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: T. Griest.

_ FUNCTION SPEC : Aimpoint

- - Aimpoint is responsible for returning a new elevation and azimuth to

the caller based on the acceleration adjustment.

-- Modifications Log

-- 89-11-6 : TEG => Original Created.

with Types; use Types; -- for operators on types onLy!

with Aim Data; use Aim_Data;

function Aimpoint(OLD_AIMPOINT : Types.AIMPOINTTYPE;

ACCELADJUST : AimData.RATERECTYPE)

return Types.AIMPOINT_TYPE;

I
I
!
I
I
I
I
I

-42-

p == I

Distributed Issues Final Report

-- % UNIT: Aimpoint function body.

--X Effects: Compute new aimpoint based on acceleration requirements. --

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

FUNCTION BODY : Aimpoint

The selected aimpoint is a function of the desired change in acceleration

-- for each of three axis and the current aimpoint. The following rules are

-- used:

- - TO INCREASE Z ACCELERATION adjust elevation towards 16384 (straight up)

-- TO INCREASE X ACCELERATION adjust azimuth towards 0 (straight right)

-- Obviously there is some interaction among these components. Z

-- is the controlling axis since its acceleration is not dependent on azimuth

-- and the accelerations in X and Y are dependent on elevation. Once the

change in elevation has been established, the impact on X and Y

-- accelerations are computed, then a proper azimuth is selected based

-- on the above rules.

-- To implement the friendly fire suppressor only generate and process

-- elevations between -16384 (straight down) and 16384 (straight up).

and azimuths between 0 (straight right) and 32767 (straight

-- left).

When adjusting elevation, reduce negative impact since gravity will

-- have a compensating effect.

-- Modifications Log

-- 89-11-03 : TEG => Original Created.

function Aimpoint(OLDAIMPOINT : Types.AIMPOINTTYPE;

ACCELADJUST : AimData.RATERECTYPE)

return Types.AIMPOINT TYPE is

max climb : constant := 16384;

maxdescend : constant := -16384;

Left constant := 32767; -- full left while going forward

right : constant 0; full right while going forward

elevfactor : constant := 10000; -- controls flexibility in turning rocket

az-factor : constant : 10000; -- controls flexibility in turning rocket

NEWAIMPOINT: Types.AIMPOINT TYPE;

ADJUSTELEV : Types.EXTENDED BAM; -- use 32-bit values for intermediate

-43-

Distributed Issues Final Report

ADJUST AZ Types.EXTENDEDBAM;

TEMP :Types.EXTENDED_6AM;I

beg in

-~Put("In Aimpoint: ADJUST_ELEVATION: 11);

Change elevation to effect Z acceleration first.

ADJUSTELEV := Types.EXTENDED BAM(ACCELADJUST.Z * etev_factor);I

if ACCEL-ADJUST.Z < 0.0 then

ADJUSTELEV := ADJUSTELEV / 2; -- reduce descend angle because of gravity

end if;I
TEMP := Types.EXTENDEDBAM(OLDAIMPOINT.ELEVATION) + ADJUST_ELEV;

-Must perform Limit check on climb/descend.

if TEMP > max-climb then

NEWAIMPOINT.ELEVATION := max_climb;

elsif TEMP < max-descend thenI
NEWAIMPO!NT.ELEVATION :=max-descend;

else

NEWAIMPOINT.ELEVATTON :Types.BAM(TEMP);I
end if;

-NOW PROCESS AZIMUTH4 (Using only X, Let Y take care of itself!)I

ADJUST AZ :z Types.EXTENDEDBAM(-ACCELADJUST.X * az-factor);

Do limit checks to make sure we don't start turning back towards FLOT

TEMP :=Types.EXTENDEDBAM(OLDAIMPDINT.AZIMUTH) + ADJUST_AZ;

if TEMP > Left then

NEWAIMPOINT.AZIMUTN :=Left;

eLsif TEMP < right then

NEWAIMPOINT.AZIMUTN : right;I
else

NEWAIMPOINT.AZIMUTH :~Types.BAM(TEMP);

end if;I
return NEWAIMPOINT;

end AIMPOINT;

-44-

Distributed Issues Final Report

..

-- % UNIT: BDS Spec & Body.

-- % Effects: Initiates main processing, Loops recording idLe time. --

-- % Modifies: No global data is modified.

-- % Requires: Status.lnitiaLize be caLled before Mouse.InitiaLize.

-- % Raises: No explicitLy raised exceptions are propagated.

-- % Engineer: T. Griest
..

......-.. Distribution and Copyright ----------------

-- Derivation : LabTek Border Defense System V2.0

-- This Border Defense System Software inherits the LabTek copyright.

-- The foLLowing copyright must be included in aLL software utilizing

-- this application program.

-- Copyright (C) 1989, 1990 by LabTek Corporation, Woodbridge, CT, USA

-- Permission to use, copy, modify, and distribute this

-- software and its documentation for any purpose and without

-- fee is hereby granted, provided that the above copyright

notice appear in all copies and that both that copyright

-- notice and this permission notice appear in supporting

-- documentation, and that the name of LabTek not be used in

-- advertising or publicity pertaining to distribution of the

-- software without specific, written prior permission.

-- LabTek makes no representations about the suitability of

-- this software for any purpose. It is provided "as is"

-- without express or implied warranty.

---------------... Disclaimer -------------------------------

-- This software and its documentation are provided "AS IS" and

-- without any expressed or implied warranties whatsoever.

-- No warranties as to performance, merchantability, or fitness

-- for a particJlar purpose exist.

-- In no event shaLL any person or organization of people be

-- held responsible for any direct, indirect, consequential

-- or inconsequential damages or lost profits.

------------------- END-PROLOGUE -------------------------------

"'I

" TASK BODY : BDS main procedure

The BDS main procedure is used to synchronize the start of events within

the entire system. During elaboration until the start of the procedure,
the system wilt settle to a known state. Then when the caLL to Status

is performed, the statistics titles will be printed on the screen. After

"' this is performed the Mouse initialization is completed. Then two

-45-

I
Distributed Issues Final Report

successive entry calls are done. The first starts the Rocket.Control task

going. The second signals the Track task to begin processing target

-- information.

-- The "--STP(NNNN) .. ." signifies a Time Point stamp location. There is a

too(built by LabTek which transforms these comments to Ada code which I
performs a call to a TimeStamp procedure. In order to keep from filling

-- memory too fast, a loop is used to force the main procedure to Loop slower

than it normally would. This time stamp routine will enable approximations

-- of the amount of free time the processor has, since this procedure has the

-- lowest priority. I-

-- Modifications Log

88-09-30 : TEG => Original created.

with Config; -- global configuration parameters

with Status; -- updates statistics used

with Types; -- global types definitions

with Mouse; -- mouse movement and rocket launching

with Rocket; -- rocket attitude and aimpoint calculations

with Target; -- generation of various targets

with InterruptControl; -- enabling and disabling of (aIl) interrupts

with Machine-Dependent; -- individual pixel plotting for EGA

with Time-Stamp; -- run time profiLer

with Distrib;

procedure BDS is

-- This is the main program for the Border Defense System. It has only

-- two calls which are of any importance, i.e., the other code is for

-- timing purposes only. The first call performs initialization of the screen

-- statistics descriptions and their initial values. The second cal starts

-- the mouse.

use Types; -- for visibility to "

pragma PRIORITY(Config.bdspriority); I
COUNT Types.WORD; -- these two variables are for

SLOW Types.WORD; -- slowing the time stamps I
begin

if Distrib.MASTER then

Status.Initialize; -- print screen statistics

Mouse.Initialize; -- must be done after status signal

Rocket.ControL.Start;

Target. Track.Start;

end if;

loop -- done with initialization

-46-

Distributed Issues Final Report

TimeStamp.Log(OOO1); --STP(OOO1) BDS main time stamp

SLOW :=1;

for COUNT in 1..2000 toop

SLOW :=SLOW + 1;

end Loop;

end Loop;

end BOS;

-47-

I
Distributed Issues Final Report

--% UNIT: Config Spec. I
-- % Effects: Provides system-wide configuration constants. --

-% Modifies: No global data is modified. --

-- % Requires: No initialization is required. --

-- % Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: T. Griest.

--I --. .

PACKAGE SPEC : Config -- I
The Config package (which currently has no body associated with it) can

be contrasted to the Types package. WhiLe the Types package is responsible

-- for declaring the various global types used throughout the BDS, the Config

-- package is used to declare global constants. The rocket launch trajectory

is used to determine the azimuth and elevation of the rocket before takeoff.

The kill radius is used to determine the explosive power of the rocket as

it hits near a target. If the target is within the radius determined below, I
then it is considered to have been close enough to the rockets explosion to

have caused damage severe enough to render it immobile and harmless. Note

-- that the BDS does not take into account the case of a rocket doing "some"

-- damage on the target; every target is considered to be totally missed or

fully hit. There are two battle areas that can be considered in the BDS.

The first is the battlefield area which is the "real" area of conflict and

-- the other is the screen battlefield which is shown to the user. The "real"

-- battlefield is used by the Target Tracker, the Rocket Controller, and their

-- respective data links to their sensors. In order to provide a proportional

-- view of the "real" battlefield area, the number of pixels in X and Y was

calculated. The screen battlefield does not takc up the entire screen;

-- some is left for the display of statistics. The calculations done in the

"real" battlefield are three dimensional, those on the battlefield screen

-- two dimensional.

The bytes per storage unit is used for transportability reasons. A count

of bytes required for each tasks' stack (including nested procedures) was

included so that the application could be less implementation dependant.

To leave defaults in place would require that the largest stack frame

be used for all tasks stacks regardless of the actual space needed. By

-I specifying the amount of stack needed on a per task basis, less memory

". is used.

- The interval constant declared below is the basic unit on which timing

-. in the BOS is performed. It specifies that an entire iteration (which I
- includes a rocket update, a target update, and a possible mouse or

statistics update) all be performed in 100 millisecs. The delays specified

-' in the timed tasks (Target.Track, Rocket.Control, Simutate.RDL.Rock_Sup and

-- Simutate.Sensor.TargSup are the timed tasks currently) are calculated

'j so that they will wakeup once every interval (100 ms). The rest of the

" system derives its timing from these drivers.
The priorities are grouped together here because priorities specified

individually in each task declaration does not help anyone looking to

' determine priorities which are relative to each other. The Mouse Buffer

-48- I

Distributed Issues Final Report

task is not the highest priority task. Since there is a mouse associated

"- with the system, which uses an interrupt entry call and is treated as a

"' task, it uses the hardware interrupts to determine its priority. Since

a task must always be sitting at the accept to receive the interrjpt tasks'

entry call, the MouseBuffer task (which is responsible for translating

the X-Y motion of the mouse (and any buttons pushed) into motion of the

reticle) is defined at the highest software priority level. For the same

reason, as welt as to be able to keep the screen in real time, the Graphics

task is declared with the next available priority. In order to increase

-- I throughput from the simulator to the BDS the buffers which route rocket
and target data are declared with the next highest available priority.

" Because the simulator contains the two tasks which are scheduled according

"' to a deadline (RockSup and TargSup) these tasks are next in the priority

line. Then the rocket controller for the BDS and the target controller

for the BDS are (respectively) assigned their priorities. Below these
tasks is the statistics task priority. It is allowed to be low because

of the liberal timing requirements placed on it by the requirements

- documentation. Obviously, since the inain program performs no function

-j which is of use to the BDS, it is assigned the lowest priority.

-- Modifications Log

-- 88-10-11 : TEG => Original created.
-- 89-11-16 MPS => Added launch attitudes and locations.

with System; use System;

package Config is

-- The following two constants allow the space needed for the various tasks to

-- be declared in bytes.

byte : constant 8; -- 8 bits

bytesper_storage_unit : constant byte / System.STORAGE_UNIT;

-- Now define battlefield area perimeters

meters inbattle_area : constant := 4_000.0; -- in X and Y direction

meters per_X_pixet constant 9.625; -- rounded up to nearest

metersper_Y pixel constant 11.875; -- Types.METER.

maxpixels_inbattle area constant := meters in battlearea

/ metersper_X_pixet;

-- Task priorities in order of decreasing urgency.

-- NOTE: MOUSE INCHAR has no priority because it runs

-- completely at the hardware interrupt Level.

-- The idea implemented here is that all the Simulator information is

-- of higher priority than the actual Border Defense System code.

-49-

I
Distributed Issues Final Report

savepriority constant PRIORITY PRIORITY'Last; -- MouseBuffer
displaypriority constant PRIORITY save_priority-i; -- U, 4k,cs
track_datapriority constant PRIORITY displaypriority-I; -- Target

reportbufpriority constant PRIORITY track_datapriority-l;-- Sim.RDL

guide_buf_priority constant PRIORITY report_bufpriority-l;-- Sim.RDL I
rocksuppriority constant PRIORITY : guide_buf priority-1; -- Sim.RDL

targsup priority constant PRIORITY rock_suppriority-l; -- Sim.Sensor

controlpriority constant PRIORITY targ_suppriority-1; -- Rocket

guidancepriority constant PRIORITY control priority-1; -- Rocket

trackpriority constant PRIORITY guidance_priority-2; -- Target

update-priority constant PRIORITY trackpriority-1; -- Status

bdspriority constant PRIORITY updatejpriority-1; -- Main

-- define entire hi-res screen display borders. The screen is divided into

-- two main sections. There is the battlefield area where the targets, rockets,

-- and reticle are allowed to move, and there is the statistics area where our

-- current statistics will be displayed. The maximum number of digits allowed

-- in any statistics displayed is statisticslength. Between the statistics and

-- the battlefield there is a border.

-- define entire screen constants

entirescreenleft constant 0;

entirescreen right constant 639; I
entirescreen top constant 0;

entirescreenbottom constant 349;

-- define battlefield display borders and center.

battlefield_screenleft constant 222; -- starting (left)

battlefield screen_right constant 638; -- ending (in pixels)

battlefield_screen_top constant 1; -- starting (top)

battlefieldscreenbottom constant 338; -- ending (in pixels)

battlefield-center-x constant 430; --

battlefield_center_y constant 169;

-- define border between battlefield and statistics.

borderleft constant 221; -- starting (left)

border_right constant 639; -- ending (in pixels)

border_top constant 0; -- starting (top)

borderbottom constant 339; -- ending (in pixels)

-define statistics display borders.

status-left constant 0; -- starting (left)

status_right constant 220; -- ending (in pixels) I
status-top constant 0; -- starting (top)

statusbottom constant 349; -- ending (in pixels)

-50- I

Distributed Issues Final Report

-- statistics-length is the number of digits allowed in any status field, and

-- statstitlemax_Length is the max number of letters any particular

-- statistics title may contain.

statisticslength constant 4;

stats titLe max length constant 11;

numberoftitles constant 12;

maxtargets constant 50; - total targets

maxrockets constant :z 20; -- total rockets

interval constant 0.100; -- basic interval is lOOms
gravity constant 9.80665; -- meters/sec**2

-- launch attitude

launch azimuth constant 16384; -- straight ahead in BANS

launch_elevation constant 15000; -- 7.6 degrees off straight up

launch x constant 2000.0;

launchy constant 60.0;

Launch-z constant 10.0;

kill radius constant 10.0; -- 10 meters x 10 meters

end Config;

-51-

i
Distributed Issues Final Report 5

--% UNIT: Control task subunit. I
--% Effects: Provides overall control for rocket flight and display. --

--% Modifies: Updates rocket data base in Rocket body. --

--% Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

-- X Engineer: T. Griest.

" I
TASK BOOY : Rocket.Control

-- The Rocket.Control task controls the information coming in from the rocket

support task and the target support task. With this information it

-- develops a list for the guidance task to work on (the guidance task being

in charge of developing new aimpoints for each rocket), updates the

-- statistics, launches a new rocket if necessary, sends the new positions of

-- the rockets to graphics for displaying, receives from guidance the new

-- aimpoints, and delivers those to the Rocket Support task in the simulator.

The purpose of the disengaged pointers, the engage flag, and the rocket

-- launch flag is to support the specification that only one target can be

-- marked destroyed each interval and that only one rocket can be launched

-- per interval. Also going along with this is that targets can only be

created one per interval. This helps to maintain a better average

response time, thus predictibility of the amount of time this routine will

take is enhanced. If a graph was drawn of CPU utilization versus time, and

-- the targets ana rockets were all allowed to be created and destroyed in

-- one interval as necessary, then several destroyed rockets and consequently

several created targets (the next interval) would appear on the graph as

spikes. It is necessary to eliminate "spikes" from the BDS because it is

a deadline driven mission. For this reason, the Simulate.RDL.RockSup task

and the Simulate.Sensor.TargSup task have timing loops surrounding their

executable code. This technique allows for better fault tolerance; if one

-- of the buffer tasks or even one of the four main tasks mentioned above were

to be disabled because of an error, the rest of the system would still be

-- able to function properly.

The rendezvous mechanism with the guidance task is done as if there were

-- an array of guidance tasks. Although there is only one guidance task at

-- present, if more were added and they were on separate processors, this

design would facilitate the distribution of those tasks.

-- Modifications Log

-- 88-11-10 : TEG => Original Created.

-- 89-11-22 : MPS => History information moved from rocket pickage body

- - to rocket.control task body.

with InterruptControl;

with Grid toPixet;

-52-

Distributed Issues Final Report

with Simulate;

with Target;

with Sync;

with Calendar;

with Engage;

with TimeStamp;

pragma ELABORATE(InterruptControl, Grid_to Pixel, Sync,

Simulate, Target, Calendar, Engage, TimeStamp);

separate(Rocket)

task body ControlType is

use Calendar; -- for operators

use Types; -- for operators

use Sync; -- for operators

package RDL renames Simutate.RDL; -- make simulator transparent

dislistsize : constant := Config.maxrockets;

type HISTORYRECTYPE is record

ROCKET-OLD Types.POSITIONTYPE;

TARGET-OLD Types.POSITION_TYPE;

TARGETAIMEDAT Types.WORDINDEX;

end record;

type HISTORY_LISTTYPE is array(Types.ROCKETINDEXTYPE) of HISTORYRECTYPE;

POSHISTORY HISTORYLISTTYPE; -- :olds old rocket/target positions

MOVENUMBER Types.WORDINDEX; -- to update display

NEXTROCKETMSG ROCKETMSGTYPE; -- local copy of input msg

NEXTTARGETLIST Target.TARGETDATALISTTYPE; -- local copy of input data

GUIDEMSG ROCKETGUIDEMSGTYPE; -- local copy of output msg

AIMPOINTLIST AIMPOINTLISTTYPE(Types.ROCKETINDEXTYPE);

-- local copy

MOVE-ROCKETS Graphics.MOVELISTTYPE(Types.ROCKETINDEX_TYPE);

MOVEINDEX Types.WORDINDEX;

PIXELPOINT Shapes.PIXEL;

MSG-INDEX Types.WORD_INDEX; -- used to index incoming report

OLDSEQTAG Sync.SEQTYPE; -- to fitter state reports out

ANYACTIVE ROCKETS BOOLEAN; -- used to update OLDSEQ_TAG

ACTIVEROCKETSID Types.ROCKET INDEXTYPE; -- holds an active rockets ID

NEXTENGAGED Target.TARGETID TYPE;

NEXTDISENGAGED Target.TARGET_ID_TYPE; -- keep track of alt disengagements

DISENGAGED LIST array(Types.ROCKETINDEXTYPE) of Target.TARGET_ IDTYPE;

-53-

I
Distributed Issues Final Report

DISENGAGEDONPTR : Types.WORD INDEX;

DISENGAGEDOFFPTR Types.WORD INDEX;

DISENCAGEDACKPTR Types.WORD INDEX;

AVAILABLE_ROCKET Types.WORD_INDEX; -- possible rocket to Launch

LAUNCH PENDING BOOLEAN := FALSE;

LAUNCHTARGET Target.TARGETIDTYPE;

LAUNCHROCKET Types.ROCKET INDEXTYPE;

ROCKETDESTROYED BOOLEAN;

ROCKETLAUNCHED BOOLEAN;

begin

accept Start;
for I in AIMPOINT INFO'range Loop -- initialize track data

AIMPOINTINFO(I).ACTIVE := FALSE;

DISENGAGEDLIST(I) := 0;

end loop;

NEXTENGAGED := 0;

DISENGAGEDONPTR 1; -- initialize disengage circle queue

DISENGAGEDOFFPTR 1;

DISENGAGED ACKPTR 1;

OLD SEQ TAG := 0;

loop -- Main processing Loop

begin -- exception block

TimeStamp.Log(O002); --$TP(0002) Control task start time

ROCKETDESTROYED FALSE;

ROCKETLAUNCHED FALSE; I
ANYACTIVEROCKETS := FALSE;

-- Rendezvous with buffer task to get next rocket message from sensor

TimeStamp.Log(ODD3); --STP(0003) Control rendezvous with ReportBuf start

RDL.ReportBuf.GetReport(NEXT_ROCKETMSG);

TimeStamp.Log(ODD4); --STP(0004) Control rendezvous with ReportBuf end

If there are more on circular disengage queue, send another to tracker

if DISENGAGEDOFFPTR /= DISENGAGEDONPTR and then

not NEXTTARGETLIST(DISENGAGEDLIST(DISENGAGEDOFFPTR)).STATUS.ENGAGED

then

DISENGAGEDOFFPTR DISENGAGEDOFF PTR rem dis List size + 1;

end if;

if DISENGAGEDOFFPTR = DISENGAGEDONPTR then

NEXTDISENGAGED 0;

else

NEXTDISENGAGED DISENGAGED LIST(DISENGAGEDOFF _PTR);

-54- I

Distributed Issues Final Report

end if;

Rendezvous to Get target list from target tracker, and provide it

with information on which targets have been engaged and disengaged.

TimeStamp.Log(O005); --STP(0005) Control rendezvous with Track Dat start

Target.TrackData.Get(NEXT TARGET LIST, NEXTENGAGED, NEXTDISENGAGED);

Time_Stafp.Log(O006); --STP(0006) Control rendezvous with TrackDat end

-- Check if Track task has recognized the engage request, if so then

-- it is safe to clear it, and possibly engage another.

if NEXT ENGAGED /= 0 and then

NEXTTARGETLIST(NEXTENGAGED).STATUS.ENGAGED

then

NEXTENGAGED := 0;

end if;

-- Check to see if last disengage request was acknowledged

if DISENGAGED ACK PTR /= DISENGAGEDOFFPTR and then

not NEXTTARGETLIST(DISENGAGEDLIST(DISENGAGEDACKPTR)).STATUS.ENGAGED

then

DISENGAGEDACKPTR := DISENGAGEDACKPTR rem distist_size + 1;

end if;

-- determine which rockets have been expended, and delete them from screen

-- (previously active, but no longer in report list)

MOVEINDEX 0;

MSG-INDEX 1;

for ROCKET ID in Types.ROCKETINDEXTYPE Loop

if AIMPOINTINFO(ROCKETID).ACTIVE then

if NEXTROCKETMSG.ROCKETLIST(MSG_INDEX).SYNCTAG = OLDSEQTAG then

ANYACTIVEROCKETS TRUE; -- need an active rockets time tag

ACTIVE ROCKETSID ROCKETID;

exit; -- oLd rocket report

end if;

Look at most recent rocket report message to make sure rocket is stilt alive

if MSGINDEX <= NEXTROCKETMSG.NUMROCKETS and then

ROCKETID = NEXT ROCKETMSG.ROCKETLIST(MSGINDEX).ROCKETID

then

POSHISTORY(ROCKETID).ROCKETOLD

AIMPOINTINFO(ROCKETID).ROCKETPOS;

AIMPOINTINFO(ROCKETID).ROCKETOS :=

-55-

Distributed Issues Final Report3

NEXT ROCKETMSG.ROCKETLIST(MSGINDEX).POSITION;

POS-HISTORY(ROCKET ID) .TARGETOLD :

AIMPOINT-INFO(ROCKETID).TARGETPOS;

AIMPOINT-INFOCROCKETID).TARGET_POS :

NEXTTARGETLIST(POSHISTORY(ROCKET_ ID).TARGETAIMEDAT).POSITION_NEW-
MOVEINDEX :=MOVEINDEX + 1;

MOVE ROCKETS(MOVE_INDEX) :

(XY OLD => Grid-toPixel(POSHISTORY(ROCKET ID).ROCKET_OLD),

XY NEW => Grid to PixeL(AIMPOINTINFO(ROCKET_ ID).ROCKET_POS),
OBJECT => Shapes.ROCKET,

COLOR => Graph ics.ROCKETCOLOR);

MSG-INDEX :=MSGINDEX + 1;I
else

the rocket has deceased, put it in the list for erasure.

PIXEL-POINT :=Grid-toPixet(-- get last point in pixel value

AIMPOINT_ INFO(ROCKET_ ID).ROCKETPOS);

AIMPOINT_ INFO(ROCKET_ ID).ACTIVE :=FALSE; -- mark as inactiveI

MOVE-INDEX :=MOVEINDEX + 1;

MOVEROCKETS(MOVEINDEX)

(PIXELPOINT I
PIXELPOINT,

Shapes. ROCKET,

Graphics.background_color);

AVAILABLE-ROCKET :=ROCKET-ID; -- save if decide to Launch

DISENGAGEDLIST(DISENGAGEDONPTR):=

POS-HISTORY(ROCKET_ ID).TARGETAIMED_AT;

DISENGAGEDONPTR :=DISENGAGEDONPTR rem dis_ list-size + 1;

InterruptControL .Disable;

Status.STATUS_CONTROL(Status.AIRBORNE).DATA

Status.STATUS-CONTROL(Status.AIRBORNE).DATA - 1;

Status.STATUSCONTROL(Status.EXPENDED).DATA :=

Status.STATUSCONTROL(Status.EXPENDED).DATA + 1;

InterruptControl .Enable;

ROCKET-DESTROYED :=TRUE;

end if; -- found

else

rocket slot previously inactive, see if rocket has launched

if MSG-INDEX <= NEXTROCKETMSG.NUMROCKETS and then

NEXTROCKET MSG.ROCKETLIST(MSG INDEX).ROCKET ID=

ROCKET ID

then

-- ROCKET HAS BEEN LAUNCHED, UPDATE DATA BASES

AIMPOINT INFO(ROCKET ID)

TRUE, -- ACTIVE

NEXTROCKETMSG.ROCKETLIST MSG-INDEX).POSITION, -- NEW

-56-

Distributed Issues Final Report

NEXT_TARGET_LIST(LAUNCHTARGET).POSITIDN NEW); -- NEW

POSHISTORY(ROCKETID) :

(NEXT ROCKET MSG.ROCKET LIST(MSG INDEX).POSITION, -- OLD

NEXTTARGETLIST(LAUNCHTARGET).POSITIONNEW, -- OLD

LAUNCHTARGET); - - TARGET AIMED AT

LAUNCH-PENDING :=FALSE; -- aLL accounted for

MSG-INDEX :=MSG-INDEX + 1;

InterruptControl .Di sabLe;

Status.STATUSCONTROL(Status.AIRBORNE) .DATA

Status.STATUSCONTROL(Status.AIRBORNE).DATA + 1;

InterruptControL .Enabte;

ROCKETLAUNCHED TRUE;

else

AVAILABLEROCKET ROCKETID;

end if; -- new rocket test

end if; -- active test

end loop; -- rocket-id loop (scan of all rockets)

-Update Time tag for next message.

if ANYACTIVEROCKETS then

OLDSEQTAG :=NEXT ROCKETMSG.ROCKETLIST(ACTIVEROCKETSID).SYNCTAG;

end if; -- if no active rockets, don't change OLD_SEQ_TAG.

-Get guidance task(s) working on finding new aimpoint for guidance mg

for I in Types.WORDINDEX range 1..Distrib.nuan guide-tasks Loop

Time Starvp.Log(0007); --STP(0007) Control rendezvous with Guidance(1) start

Rocket Guide(I).History(

AIMPOINT_ INFO(Distrib.guide_ Low(I)..Distrib.guide_high(I)));

Time Stamp.Log(0008); --STP(0008) Control rendezvous with Guidance(l) end

end Loop;

-update status information

Interrupt Control .Disabie;

if ROCKET-LAUNCHED then

Status.STATUS-CONTROL(Status.AIRBORNE) .DISPLAYED FALSE;

end if;

if ROCKET-LAUNCHED or ROCKET-DESTROYED then

Status.STATUSCONTROL(Status.AIRBORNE).DISPLAYED FALSE;

Status.STATUS-CONTROL(Status.EXPENDED) .DISPLAYED FALSE;

Status.REQ COUNT :=Status.REQ COUNT + 1;

if Status. REO COUNT =1 then

Time Stamp.Log(0009)7 - -STP(0009) Control rendezvous with Status start

S tatus .Update. Signat;

Time Stamp.Log(0O1O); - -STP(OO1O) Control rendezvous with Status end

end if;

end if;

Interrupt Control .Enable;

I
Distributed Issues Final Report

MSGINDEX := 0; -- zero index for creating guidance message I
Now, check if we should try to create a new ROCKET. Note that

if a rocket has just been destroyed, don't try to fire a new one

before the rocket tracker knows that it has been disengaged. Otherwise

it is Likely to choose a target other than one that is closest.

if not LAUNCH-PENDING and

DISENGAGED ACK PTR DISENGAGEDONPTR and -- alL have been ack'ed

NEXT-ENGAGED = 0 -- engage has been ack'ed
then

NEXT ENGAGED Engage(NEXT TARGET LIST);

if NEXT-ENGAGED > 0 then

LAUNCH-ROCKET AVAILABLE_ROCKET;

LAUNCH TARGET NEXTENGAGED;

LAUNCHPENDING TRUE;

°nd if; -- ready to launch

ena if; -- not pending check

-- get graphics task working on displaying rockets

TimeStamp.Log(O011); --$TP(O011) Control rendezvous with Graphics start

Graphics.Display.Move(Graphics.LOW, MOVEROCKETS(1..MOVEINDEX));

TimeStamp.Log(O012); --$TP(0012) Control rendezvous with Graphics end

-- now get results of guidance information

for I in Types.WORD_INDEX range 1..Distrib.nuniguide_tasks Loop

Time Stamp.Log(O013); --$TP(0013) ControL rendezvous with Guidance(2) start

Rocket.Guide(I).NextGuidance(

AIMPOINTLIST(Distrib.guide_tow()..Distrib.guidehigh()));

TimeStamp.Log(O014); --STP(0014) ControL rendezvous with Guidance(2) end

end Loop;

-- Now generate new guidance message and send to Guide Buf

|I
for ROCKETID in AIMPOINTINFO'range Loop

if AIMPOINTINFO(ROCKETID).ACTIVE then

MSGINDEX := MSGINDEX + 1;

GUIDEMSG.ROCKET_GUIDELIST(MSGINDEX)

(ROCKETID,AIMPOINTLIST(ROCKET_ID));

elsif LAUNCHPENDING and then

ROCKETID = LAUNCH ROCKET then

MSG-INDEX := MSGINDEX + 1;

-- initiate Launch

GUIDEMSG.ROCKETGUIDELIST(MSGINDEX) := (ROCKETID,

(Config.Launch azimuth,

Config.launch_eLevation));

-58- I

Distributed Issues Final Report

end if;

end Loop;
GUIDE-MSG.NUM-ROCKETS :=MSGINDEX;

TimeStaimp.Log(0O15); --TP(0015) Control rendezvous with Guide -Buf start

RDL.Guide-Buf.PutGuide(GUIDE-MSG); - - send new guidance message

Time Stamp.Log(0016); --$TP(0016) Control rendezvous with GuideBuf end

exception

when others =>

Debug_1O.Put Line("Exception in Control task");

end; -- exception block

end Loop; -- main processing Loop

end ControL Type; -- Rocket.Control task body

-59-

I
Distributed Issues Final Report

-- % UNIT: Debug_10 Spec. S
--X Effects: Provides non-intrusive trace output to secondary port. --

-- % Modifies: No global data is modified. --

--X Requires: No initialization is required. -- I
--X Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: T. Griest.

-- PACKAGE SPEC : Debug_ 10

This package is used to provide visibility to the character (and string)

-- input and output procedures. Currently, because the screen memory is

-- written directly to, all text input and output is done via a serial port.

-- These routines are needed to signal to the user (via the serial port) that

-- an exception has occurred.

-- Modifications Log

-- 88-09-01 : TEG => Original created.

package Debug1 is

procedure Put(CHAR :CHARACTER);

procedure Get(CHAR :out CHARACTER);
procedure Put(STR : STRING);

procedure Get(STR : out STRING);

procedure PutLine(STR : STRING);

procedure Get_Line(STR : out STRING; LENGTH : out INTEGER); I
procedure Skip_Line;

end Debug 10;

I
I
I!

.. I!
-60-

Distributed Issues Final Report

--X UNIT: Debug_10 body.

-- % Effects: Provides non-intrusive trace output to secondary port.

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No expLicitty raised exceptions are propagated.

-- % Engineer: T. Griest.

-- J

-- PACKAGE BODY : Debug_10

The Debug_10 package is used to provide a means of communication from

the BDS to the user. Since the terminal (the EGA screen in this case) is

-- being written to directly, output cannot take place there, and therefore

Text_10 cannot be used. See the hardware configuration file for more

-- details on the input and output modes.

-- Modifications Log

-- 88-09-01 : TEG => Original created.

with TerminatDriver;

pragma ELABORATE(TerminatDriver);

package body Debug 10 is

pragma SUPPRESS(storage_check);

procedure Put(CHAR : CHARACTER) is

begin

TerminatDriver.PutCharacter(CHAR);

end Put; -- character

procedure Get(CHAR : out CHARACTER) is

begin

TerminatDriver.GetCharacter(CHAR);

end Get; -- character

procedure Put(STR : STRING) is

begin

for I in STR'range loop

TerminatDriver.PutCharacter(STR(I));

end loop;

end Put; -- String

procedure Get(STR : out STRING) is

begin

for I in STR'range Loop

-61-

I
Distributed Issues Final Report

TerminalDriver.GetCharacter(STR());

end loop;

end Get; -- String

procedure PutLine(STR : STRING) is

begin

for I in STR'range loop

Terminat_Oriver.PutCharacter(STR(1));

end Loop;

TerminaLDriver.PutCharacter(ASCII.CR);

TerminaLDriver.PutCharacter(ASCII.LF);

end PutLine;

procedure GetLine(STR : out STRING; LENGTH out INTEGER) is

CHAR CHARACTER ASCII.NUL; I
LEN INTEGER STR'first;

begin

while CHAR /= ASCII.CR and LEN <= STR'Last Loop

TerminaLDriver.GetCharacter(CHAR); I
STR(LEN) := CHAR;

LEN := LEN + 1;

end Loop; I
end Get-Line;

procedure SkipLine is

CHAR : CHARACTER := ASCII.NUL;

begin

whiLe CHAR /= ASCII.CR Loop

TerminalDriver.GetCharacter(CHAR);

end loop;

end Skip-Line;

end Debug_10;

I
I
I
I
I

-62- I

Distributed Issues Final Report

--% UNIT: Distrib Package Spec.

--% Effects: Provides parameters to control task arrays and work lists.--

-- % Modifies: No global data is modified other than in this spec. --

-- Requires: Depends on presence of Distrbuted Runtime for # of tasks.

--% Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

PACKAGE SPEC : Distrib

OPERATION

This package controls the parameters for automatically performing a

-- division of the guidance workload. In this case, a large array can be

broken down so that two or more tasks can perform their operations on the

array at the same time (if true muLti-processing is in effect).

.--

-- Modifications Log

-- 88-12-05 : TEG => Original Created.

-- 89-12-06 : TEG => Enhanced to support dynamic configuration/reconfiguration

with Types;

----..---.---

.. DISTRIBUTION CONTROL PARAMETERS --

...

package Distrib is

-- Configuration Setting for number of Rockets and Targets

-- These are set during package body elaboration.

NUMTARGETS : Types.WORD_ INDEX;

NUMROCKETS : Types.WORD_ INDEX;

-- Max_numguide_tasks is used to determine the maximum number of guide

-- tasks which could be created. It is used simply to define the size of

-- the index arrays.

Maxguide_tasks : constant := 2;

-- NUMGUIDETASKS contains the ACTUAL nunber of guide tasks in the current

-- configuration. it is initialized by a caLL to the distributed runtime

-- during package elaboration.

NUMGUIDETASKS : Types.WORDINDEX;

-63-

I
Distributed Issues Final Report

-- MASTER is TRUE iff this processor has been configured as the master

-- processor.

MASTER BOOLEAN;

-- The following two "index" arrays are used by the Congrol task to

-- divide work among the possible guidance tasks. These values are

-- also intiaLized according to the configuration control tables in

-- in the Distrib package body during elaboration.

GUIDE-LOW array(Types.WORDINDEX range 1..Max_guide_tasks)

of Types.WORDINDEX;I
GUIDEHIGH array(Types.WORDINDEX range 1..Max_guidetasks)

of Types.WORD_ INDEX;

-- RESTART is used to sZop operation of the BDS and allow the operator

-- setup a different configuration. It is onLy called when the MODE

-- button is pressed while the RESET button is held down on the mouse.

procedure Restart; -- DOES NOT RETURN TO CALLER!

pragma INTERFACE(ASM86, Restart);

pragma INTERFACESPELLING(Restart, "D1DRTE?RESTART");

end Distrib;

I
U
I
I
I
I
I
I

-64-

I

Distributed Issues Final Report

-- UNIT: Engage Procedure Spec.

-- Effects: Determines if Rocket is to be Launched, and at what target.-

--X Modifies: No global data is modified.

--X Requires: Status package rust set mode and airborne counts. --

--% Raises: No expticitLy raised exceptions are propagated. --

--X Engineer: M. Sperry.

--..

-- SUBPROGRAM SPEC : Engage

"'I

This function determines which target wilL be selected when it is

determined that a rocket needs a target to aim at.
-- I

Modifications Log

-- 88-11-10 : MPS => Originat Created.

with Target;

function Engage(TARGETINFO : in Target.TARGETDATALIST TYPE) return

Target.TARGET_ID TYPE;

-65-

I
Distributed Issues Final Report

-- % UNIT: Engage Procedure Body. -

--% Effects: Determines if Rocket is to be Launched, and at what target.-

--% Modifies: No global data is modified. --

-- % Requires: Status package must set mode and airborne counts. --

-% Raises: No explicitly raised exceptions are propagated. --

--X Engineer: M. Sperry.

SUBROGRAM BODY : Engage

The Engage procedures performs two functions based on the MODE. The

MODE is either MANUAL or AUTOMATIC. In MANUAL mode the engage procedure I
first determines if a rocket can be Launched and not exceed the maximum

-- allowable rockets. It then reads the shared variables of the reticle's

position and the LAUNCH button on the mouse and determines if the reticle

is in proximity to a target. If so, that target is chosen unless there is

-- one closer. In AUTOMATIC mode, if there are not too many active rockets,

then the target closest to the bottom of the screen is chosen. This routine

-- is catled during every rocket control task iteration. The returned

-- parameter TARGET is zero if no target should be engaged, otherwise it I
indicates the selected targets id.

-- Modifications Log I
-- 8-11-20 : MPS => Original Created.

with InterruptControl;

with Status;

with MouseBuffer;

with Types;

with Config;

with Shapes;

with TimeStamp;

with Distrib;

pragma ELABORATE(InterruptControt, Status, Mouse_Buffer, Distrib);

function Engage(TARGETINFO : in Target.TARGET_DATA_LISTTYPE) return

Target.TARGET IDTYPE is

use Types; -- for operators

use Status; -- for operators

RETICLEX PIXEL Types.WORD; -reticle in PIXEL coordinates

RETICLEYPIXEL : Types.WORD; -- reticle in PIXEL coordinates

RETICLEXGRID : Types.METERS; -- reticle in GRID coordinates I
RETICLEYGRID : Types.METERS; -- reticle in GRID coordinates

PREVDISTANCE : Types.METERS; I

-66- I

Distributed Issues Final Report

DISTANCE_X Types.METERS;

DISTANCE-Y Types.METERS :=Config.rneters-in-battle-area;

TOTAL-DISTANCE :Types.METERS;

TARGET_ ID :Target.TARGETIDTYPE;

begin

Time_Stanp.Log(0018); - -STP(0018) Engage start

TARGET1) := 0; - - default

if Status.STATUS-CONTROL(Status.AIRBORNE).DATA

Types.WORD(Oistrib.NU4_ROCKETS)

then

if Status.MODE = Status.MANUAL then

if IMouse-Buffer.LAUNC4 then

-read ABSX and ABSY in Mouse-Buffer, then convert to METERS types.

-Then, find closest target in list to reticle, and give it back.

Interrupt Controt.Disabte; -go atomic while reading

RETICLE-XPIXEL Mouse-Buffer.NEW-ABSX;

RETICLEYPIXEL MouseBuffer.NEW-ABSY;

MouseBuffer.LAUNCH := FALSE;

Interrupt -Control .EnabLe;

RETICLE-XGRID :

Types.METERS(Types.METERS(RETICLEXPIXEL -

Config.battlefieLd-screen-left)

Types.METERS(Config.meterspe-rXpixe));

RETICLEYGRID :

Types.METERS(Types.METERS(Config.battlefietd screen-bottom -

RETICLE-YPIXEL) *

Types.METERS(Config.metersjerY~ixe));

-This loop locates the closest target to the reticle center

for ID in Types.TARGET_- INDEX_-TYPE loop

if TARGET INFO(ID).STATUS.ACTIVE and then

not TARGETINFO(ID).STATUS.ENGAGED then

DISTANCEX abs(RETICLEXGRID - Types.METERS(

TARGET_ INFO(ID).POSITIONNEW.X));

DISTANCEY abs(RETICLEYGRID - Types.METERS(

TARGET_ INFO(ID).POSITIONNEW.Y));

if DISTANCEX <c= Shapes.reticte_X-error and

DISTANCEY <= Shapes.reticleY-error

then

TOTAL-DISTANCE :=Types.METERS(DISTANCE X *DISTANCEX) +

Types.METERS(DISTANCE-Y *DISTANCEY);

if TARGETID = 0 or else TOTAL-DISTANCE < PREVDISTANCE then

PREVDISTANCE :=TOTALDISTANCE;

TARGET ID :=ID;

end if; -- distance/target check

end if; -- x and y reticle distance check

end if; -- active/not engaged check

end loop;

end if; - Launch check

else - - automatic mode, search for closest Y value

for ID in Types.TARGET_INDEX_TYPE loop

-67-

Distributed Issucs Final Report

if TARGET_INFO(ID).STATUS.ACTIVE and then

(not TARGETINFO(ID).STATUS.ENGAGED and

Types.METERS(TARGET-INFO(ID).POSITIONNEW.Y) - DISTANCEY)

then

DISTANCE-Y Types.METERS(TARGET_ INFO(ID).POSITION-NEW.Y);

TARGETID ID;

end if; -. active/not engaged/closest y check

end Loop;

end if; -- mode check
end if; - numrber of rockets check

Time_Stanp.Log(0019); - -STP(0019) Engage end

return TARGETID;I
end Engage;

-68-

Distributed Issues Final Report

--X UNIT: Graphics Package Spec.

--X Effects: Performs all updates to graphics display. --

--X Modifies: No global data is modified. --

--X Requires: Screen must be put in graphics mode by runtime initialize.--

--X Raises: QUEUEERROR is raised if no room for move list. --

--X Engineer: T. Griest / M. Sperry.

"'1 PACKAGE SPEC : Graphics
"-I

The Graphics package provides the interface for all screen display

operations. AlL activity is performed by the Display task which insures

that the display is updated in a consistent and timely fashion. The shapes

that the graphics displays are all defined in the Shapes package. The

MOVE RECORD is defined as all the elements needed in order to perform a

" draw or erase of an image. A MOVELIST is an array of MOVE_RECORDs and

"' it is used as a parameter when one of the routines responsible for moving

-' an image across the screen needs to rendezvous with Graphics.Display. An

"' entire list is enqueued onto one of the priority queues and each element

" is dequeued separately in order to continuously check for more arrivals.

The high priority queue is currently reserved for the reticle motion.
-- I

-- Modifications Log

-- 88-08-25 : TEG => Original created.

with Types;

with Config;

with Shapes;

package Graphics is

stacksize : constant := 8192; -- in bytes

-- define screen and graphics constants

subtype COLOR TYPE is Types.WORD; -- range 0..63; -- 64 colors on EGA

background_color : constant COLOR_TYPE : 0 0; -- black

reticle color : constant COLOR_TYPE := 14; -- bright yellow

border color : constant COLOR_TYPE : 9; -- bright blue

statuscolor : constant COLORTYPE : 15; -- bright white

status box color : constant COLORTYPE := 9; -- bright blue

rocket color : constant COLORTYPE := 12; -- bright red

target-color : constant array(Types.TARGET_CLASS_TYPE, BOOLEAN) of

-69-

I

Distributed Issues Final Report

COLOR-TYPE := ((6, 14), (3, 11), (2, 10), (5, 13));
-- different color for engage = faLse/true and target type

noprocess constant COLORTYPE := 16; -- don't process object color

-- define graphics data structures

type MOVE_RECORD is record I
XYOLD Shapes.PIXEL; -- previous position object heLd

XYNEW Shapes.PIXEL; -- new position

OBJECT Shapes.SYMBOLTYPE; -- list of relative offsets

COLOR COLOR_TYPE; -- color for that object

end record;

type MOVE_LISTTYPE is array (Types.WORD_INDEX range <) of MOVE-RECORD;

type PRIORITYTYPE is (HIGH, LOW);

QUEUEERROR : exception; if queue over/underftow I

task type DisptayType is

entry PrintTittes(X,Y Types.WORD;

TITLE STRING;

COLOR COLORTYPE);

entry Move(PRIORITY : PRIORITYTYPE; WORKLIST : MOVELISTTYPE); I
pragma PRIORITY(Config.disptaypriority);

end DispLayType;

for DisplayType'STORAGE_SIZE use INTEGER(Config.bytesperstorageunit *

stacksize);

Display :DisplayType;

end Graphics;

I
I
I
I
I

-70- I

Distributed Issues Final Report

--% UNIT: Graphics Package Body

--X Effects: Performs all updates to graphics display. --

--X Modifies: No global data is modified. --

--X Requires: A method of access to the EGA BIOS calls.

--X Raises: QUEUE-ERROR is raised if no room for move list. --

--X Engineer: T. Griest / M. Sperry.

' PACKAGE BODY : Graphics
"'1

" - The purpose of the graphics package body is the implementation of the

"' display task.

"' TASK BODY : Graphics.Display

"'- The display task is responsible for buffering the various tasks that want

"'I to draw their particular symbol on the screen. The task begins by placing

"' the screen (via BIOS calls) into high resolution mode 10h. When this

"' is done, the screen wilt be in write mode 0 - the BIOS default. In this

"' mode it is possible to print characters easily by calling the appropriate

"'jBIOS routine. After the statistics have been printed, a change to write
mode 2 is accomplished. This mode permits quick drawing of pixels in the

color needed, and the battlefield border is drawn this way. The rest of

"' the graphics are also done in this mode. The display task then waits

"' for a work request to draw a symbol. When a request comes in, it is put

"' on a prioritized queue. The queue used is a function of the callers'

-- priority. Now, since there is work to do, the task processes one symbol

at a time, checks to see if other tasks are waiting to queue any requests,

and continues processing until no requests are left in any of the queues.

When a request is processed, it's old position is erased, and it's new

position is drawn. No attempt is made to synchronize with the vertical

retrace since it would slow down the task too much. The penalty associated
with this is a slight flicker of some of the images (especially when the

-- reticle is being slowly dragged across the screen). When checking if there

-- is more work to do, using 'count instead of a select statement was used

-- because the code generated for 'count was significantly smaller.

-- Modifications Log

-- 88-08-25 : MPS => Original Created

with MachineDependent;

with Interrupt Control;

with Debug_10;

with TimeStap;

pragma ELABORATE(MachineDependent, InterruptControl, Debug_10, TimeStap);

-71-

Distributed Issues Final Report

package body Graphics is

task body DisplayType is

use Types; -- needed for visibility to "+" operator

buffer-size constant 256;

initializescreen constant 0; -- for Int 10 BIOS call, fnctn 0

dummy_1 constant 0; -- dummy parameter

dumm,,_2 constant 0; -- dummy parameter

position_cursor constant 2; -- position function is int I0, fnct 2
write constant 14; -- write char is int 10, fnct 16#OE#

type CIRCULAR-BUFFER is array(Types.WORDINDEX range 0 .. buffer-size - 1) of

MOVE-RECORD;

type BUFFER_TYPE is record

ON Types.WORD_INDEX 0;

OFF Types.WORD_INDEX 0;

DATA CIRCULARBUFFER;

end record;

SET-PRIORITY PRIORITY-TYPE := PRIORITYTYPE'FIRST;

BUFFER array(PRIORITYTYPE'FIRST..PRIORITY_TYPE'LAST) of BUFFER_TYPE; -- set up queues

NOWORK BOOLEAN; -- all queues empty?

WORK-REQUEST MOVE-RECORD; -- for individual processing

OBJECT Shapes.OBJECTPTR; -- current object to move

TEXTMODE BOOLEAN; -- printing stats titles?

CHAR Types.WORD; -- temp for holding string slices

COUNTER Types.WORD; -- index into TITLE string

procedure Erase_Image(BASE Shapes.PIXEL;

ITEM Shapes.OBJECTPTR) is

-- SUBPROGRAM BODY : Graphics.Display.Erase_Image

-- J A procedure designed to calculate absolute coordinates for the routine

MachineDependant.Put_Pixel given a shape(OBJECT_PTR) and an absolute

reference point where the object is to be placed. No color is specified

because the intent of this procedure is to erase, which is actually

-- drawing over the old image in the background color.

begin
TimeStamp.Log(O020); --STP(0020) Graphics.Erase_Image start

for I in ITEM.all'range Loop

MachineDependent.PutPixel(BASE.X + ITEM.alt(I).XOFFSET,

BASE.Y + ITEM.aLl(I).YOFFSET,

backgroundcolor);

end loop;

-72-

Distributed Issues Final Report

TimeStamp.Log(0021); --STP(0021) Graphics.Erase_Image end

end EraseImage;

pragma INLINE(ERASE IMAGE);

procedure DrawImage(BASE Shapes.PIXEL;

ITEM Shapes.OBJECT_PTR;

COLOR COLOR TYPE) is

SUBPROGRAM BODY: Graphics.Display.Drawlmage

This procedure is functionally the same as Eraseimage except that a

color is passed to it so that the object can be drawn in that color.

begin

TimeStamp.Log(O022); --STP(0022) Graphics.Draw_Image start

for I in ITEM.all'range loop

MachineDependent.Put_Pixet(BASE.X + ITEM.atL(I).XOFFSET,

BASE.Y + ITEM.atL(I).YOFFSET,

COLOR);

end loop;

Time Stamp.Log(0023); --STP(0023) Graphics.Draw_Image end

end Drawimage;

pragma INLINE(DRAWIMAGE);

procedure InitializeBorder is

-- SUBPROGRAM BODY: Graphics.Display.InitializeBorder

A procedure which utilizes the Shapes package to place a color border

around the screen thus defining the battlefield area. The reticle never

-- leaves the battlefield area and statistics are never displayed inside

the battlefield area.

BORDER : MOVE-RECORD;

begin

BORDER.OBJECT := Shapes.DOT;

OBJECT := Shapes.OBJECTPTRTABLE(BORDER.OBJECT);

BORDER.COLOR := border_color;

-- draw top and bottom border

for I in Config.borderleft..Config.borderright loop

BORDER.XYNEW := (Types.COORDINATE(I),Config.bordertop);

Draw_Image(BORDER.XYNEW,OBJECT,BORDER.COLOR);

-73-

II
Distributed Issues Final Report

BORDER.XYNEW := (Types.COORDINATE(I),Config.borderbottom);

Draw_Image(BORDER.XYNEW,OBJECT,BORDER.COLOR);

end Loop;

-- draw left side and right side border

for J in Config.bordertop..Config.border bottom loop

BORDEP.XYNEW := (Config.border_left,Types.COORDINATE(J));

DrawImage(BORDER.XYNEW,OBJECT,BORDER.COLOR);

BORDER.XYNEW := (Config.borderright,Types.COORDINATE(J));

DrawImage(BORDER.XY_NEW,OBJECT,BORDER.COLOR);

end Loop;

exception

when others => Debug_1O.PutLine("Exception raised in Graphics.Initialize");

end Initialize-Border;

procedure Enqueue(PRIORITY : PRIORITY_TYPE; MOVEREQUEST : MOVERECORD) is

-- I
-'ISUBPROGRAM BODY :Graphics.Disptay.Enqueue

A procedure which enqueues a MOVERECORD (a record containing aiL the

information needed to draw a symbol) onto the proper priority queue for

later processing. May raise QUEUEERROR.
"'1 I

ON_NEW : Types.WORDINDEX;

beg in

TimeStamip.Log(O024); --STP(0024) Graphics.Enqueue start

ONNEW := (BUFFER(PRIORITY).ON + 1) rem buffer_size; I
if ONNEW = BUFFER(PRIORITY).OFF then

raise QUEUEERROR;

end if;

InterruptControl.Disable; -- compiler bug

BUFFER(PRIORITY).DATA(ONNEW) := MOVEREQUEST;

InterruptControl.Enable;

BUFFER(PRIORITY).ON := ONNEW;

Time_Staio.Log(O025); --STP(0025) Graphics.Enqueue end

end Enqueue;

pragma INLINE(Enqueue);

procedure Dequeue(PRIORITY : PRIORITYTYPE; MOVE_RECUEST : out MOVERECORD) is

-- SUBPROGRAM BODY : Graphics.Display.Dequeue
--I I

A procedure which is given the priority of the queue it needs to access

-* in order to pop the MOVERECORD (a record containing drawing information)

-74- I

Distributed Issues Final Report

oft that queue. If there are no items on that queue, QUEUEERROR is raised.

OFFNEW :Types.WORDINDEX;

beg in

Time Stanmp.Log(OO26); --STP(0026) Graphics.Dequeue start

if BUFFER(PRIORITY).OFF = BUFFER(PRIORITY).ON then

raise QUEUEERROR;

end if;

OFF-NEW :=(BUFFER(PRIORITY).OFF + 1) rem buffer_size;

InterruptControi.Disable; -- compiler bug

MOVEREQUEST :=BUFFER(PRIORITY).DATA(OFF NEW);

InterruptCont rot .Enable; -

BUFFER(PRIORITY).OFF :=OFF-NEW;

TimeStamp.Log(OO27); - -STP(0027) Graphics.Dequeue end

end Dequeue;
pragnia INLINE(Dequeue);

-- Body of DISPLAY TASK--

begin

NO-WORK :=TRUE;

TEXT-MODE :=TRUE;

MachineDepndent.IntIO(initia~ize-screen,

durmnyl, .dummiy variables are unused

dmiy 2); -- hi-res graphics mode
MachineDependent.WriteMode_0;

while TEXT-MODE loop

accept Print_Tittes(X,Y Types.WORD;

TITLE STRING;

COLOR COLORTYPE) do

if TITLE'length > 0 then
Machinte Dependent. IntIO(position-cursor,X,Y);

COUNTER :=1;

while COUNTER <= TITLE'tength loop

CHAR :=Types. WORD (CHARACTER Ipos(T ITLE (INTEGER (COUNTER)))
Mach ine Dependent .IntlO(write,

CHAR,

COLOR);

COUNTER COUNTER + 1;

end loop;

else

TEXT-MODE FALSE;

end if;

end Print-Tittes;

end loop;

Machine-Dependent.WriteMode_2; -- go to write mode 2
Initiatize Border; -- draw battlefield border

-75-

I
Distributed Issues Final Report

L oopm

begin -- exception block

TimeStamp.Log(O028); --STP(0028) Graphics task start

if NO_ WORK or Move'COUNT > 0 then

TimeStamp.Log(0112); --$TP(0112) Graphics accept Move start

accept Move(PRIORITY : PRIORITYTYPE; WORKLIST : MOVE_LIST_TYPE) do

for I in WORKLIST'range Loop

Enqueue(PRIORITY, WORK_LIST(I));

end Loop;

end Move;

TimeStamp.Log(0113); --STP(0113) Graphics accept Move end

NOWORK := FALSE;

end if;

Now there is some work to do, see if any Left on highest priority

SETPRIORITY := PRIORITYTYPE'FIRST;
loop1

if BUFFER(SETPRIORITY).ON /= BUFFER(SETPRIORITY).OFF then

Dequeue(SET_PRIORITY,WORKREQUEST); -- at this point, requests real

OBJECT := Shapes.OBJECTPTRTABLE(WORKREQUEST.OBJECT);
Erase_Image(WORKREQUEST.XY_OLD, OBJECT); 1
Draw_Image (WORK_REQUEST.XY_NLW, OBJECT, WORKREQUEST.COLOR);

NOWORK FALSE;

exit; -- Leave Lonp if we processed a request
else

NO-WORK TRUE; -- default

exit when SET-PRIORITY = PRIORITYTYPE'LAST;

SETPRIrRITY := PRIORITYTYPE'SUCC(SETPRIORITY);

end if;

end Loop;

exception

when QUEUE-ERROR => null; -- since error is propagated to calter

when others =>

Debug IO.PutLine("Error in Display Task");

end; -- exception block

TimeStamp.Log(029); --$TP(0029) Graphics task end

end luop;

end Display_Type;

Iend Graphics;

I
-76- I

Distributed Issues Final Report

--% UNIT: GridtoPixel Function Spec. --

--% Effects: Converts battlefield meters X-Y to graphics Pixel X-Y. --

-- % Modifies: No global data is modified. --

--% Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

-% Engineer: T. Griest.

--.--.-----------

-- SUBPROGRAM SPEC : GridToPixet

This function provides a translation to go from the "real" battlefield

-- to the screen battlefield. Note that the screen battlefield has the Y

component at 0 at the top of the screen and increasing positively down

-- the screen. A diagram in hwconfig.as shows the complete screen.

-- Modifications Log

-8- -d9-26 : TEG => Original created.

with Shapes;

with Types;

function Grid to PixeL(GRID : in Types.POSITIONTYPE) return Shapes.Pixet;

pragma INLINE(Grid_to Pixel);

-77-

Distributed Issues Final Repoit

-%UNIT: Grid -to_-Pixel Function Spec. -I

- Effects: Converts battlefield meters X-Y to graphics Pixel X-Y. --

-Modifies: No global data is modified.--

-XRequires: No initialization is required. -

-XRaises: No explicitly raised exceptions are propagated.

-XEngineer: T. Griest.

-- -- ------------------ ------------- ---

SUBPROGRAM BODY : GridTo Pixel

Translate from Battlefield Grid coordinates in meters to pixels

-- on the screen. This means applying scale factors for x/y and

providing offsets to battlefield area on screen. NOTE: sinceI
-- battlefield coordinates have 0,0 in tower Left; and graphics

-. coordinates have 0,0 in upper left, this involves a transpose of

-. the Y axis (thus the 1-').

-Modifications Log

-88-10-20 :TEG => original created.

-89-01-04 :MPS => Changed TimeStamp to properly time the routine.

with Config;

with Time-Stamp;

with Math;
pragma ELABORATE(Time Stamp, Math);

function Grid-toPixel(GRID : in Types.POSIT[ONTYPE) return Shapes.Pixel is

use Types;

use Math;

TEMP Types.LONGFIXED;

PIX :Shapes.PIXEL;

beg in

TimeStarTp.Log(0030); - -STP(0030) GridToPixel start
TEMP :GR!O.Y / Types.LONGFIXE(Config.metersperxpixel);I
PIX.X :=Config.battlefield-screen_ left + Types.COORINA'E(1'EMP);

TEMP :~GRIO.Y / Types.LONGFIXED(Confi-.meters_per ypixel);

p-' Config.battlefiek(screen_ Left + Types.COORDINATE(TEMP);I
Time_Stamp.Log(0031); --$TP(0031) Grid To Pixel end

return PIX;

end Grid-toPiAet;

-78-

Distributed Issues Final Report

..

--% UNIT: Guidance Task Subunit

--X Effects: Calls "Guide" to compute next rocket aimpoint for every --

active rocket in the input List.

-- M Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

TASK BODY : Rocket.Guidance

- - Task Guidance is used as a template for an array of tasks which compute

guidance information for a specified number of rockets. The first thing

- it does is it gets the history information for the rocket/target List

-- and makes a Local copy. The index of the history array (containing previous

-- positions and which rockets were previously active) is ROCKET_ID. The

-- entire guidelist array is passed, even though many of the entries may be

-- inactive. Only active rockets (those that are in the air or taking off)

are given guidance. The entire array however is again passed back to the

caller, the rocket control task.

-- Modifications Log

-- 88-10-12 : TEG => Original created.

-- 89-11-22 : MPS => Adjusted to work with new Guide procedure.

with Guide;

with Time_Stamp;

with InterruptControl;

pragma ELABORATE(Guide, TimeStamp, InterruptControl);

separate(Rocket)

task body GuidanceType is

use Types; -- for operator visibility

NEXTGUIDELIST AIMPOINTLISTTYPE(l..Config.maxrockets);

NEXTHISTORYLIST POSITIONLIST TYPE(1..Config.maxrockets);

FIRSTROCKETID : Types.WORDINDEX;

LASTROCKET_10 Types.WORDINDEX;

begin

loop -- main processing Loop

begin -- exception block

Time_Stani.Log(O032); --$TP(0032) Guidance task start

TimeStamp.Log(0033); --STP(0033) Guidance accept History start

accept History(AIMDATA : in POSITIONLISTTYPE) do

-79-

I
Distributed Issues Final Report

FIRSTROCKETID AIMDATA'first;

LASTROCKETID AIMDATA'Last;

InterruptControt.Disable; --BUGFIX for compiler bug (direction flag)

NEXTHISTORYLIST(FIRST_ROCKET_ID..LAST_ROCKET_ID) := AIM-DATA;

InterruptControL.EnabLe; --BUGFIX for compiler bug

end History;

Time Stamp.Log(O034); --STP(0034) Guidance accept History end

-- process list to create guidance information

for ROCKETID in FIRSTROCKETID..LASTROCKETID loop

if NEXTHISTORYLIST(ROCKETID).ACTIVE then

Guide(ROCKETID,NEXTHISTORYLIST(ROCKETID).ROCKET_POS,

NEXTHISTORYLIST(ROCKETID).TARGET_POS,

NEXTGUIDELIST(ROCKETID));end if;

end Loop;

Time Stamp.Log(O035); --$TP(0035) Guidance accept Next_Guidance start I
accept NextGuidance(AIMPOINTLIST : out AIMPOINTLISTTYPE) do

if AIMPOINTLIST'first /= FIRST_ROCKETID or -- make sure list hasn't

AIMPOINTLIST'Last /= LAST_ROCKET_ID -- changed from History I
then

raise GUIDANCELIST_ERROR;

else

InterruptControL.Disabte; --BUGFIX for compiler bug (direction flag)

AIMPOINTLIST := NEXTGUIDELIST(FIRSTROCKETID..LASTROCKET_ ID);

InterruptControl.EnabLe; --BUGFIX for compiler bug (direction flag)

end if;

end Next-Guidance;

TimeStamp.Log(0036); --STP(0036) Guidance accept Next_Guidance end

exception

when others =>

DebuglO.PutLine("Error in GUIDANCE TASK");

end; -- exception block

Time_Stamp.Log(O037); --STP(0037) Guidance task end

end loop; -- main processing loop

end Guidance-Type;

II
I
I

-80- I

Distributed Issues Final Report

-- % UNIT: Guide Function Spec.

--% Effects: Computes a new ainmoint based on rocket/target positions. --

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

- SUBPROGRAM SPEC : Guide
"-

The Guide function is used to find an aimpoint for the rocket to fly at

when it is in flight. This includes guidance for the rocket during it's

Launch phase. It takes as parameters the rocket_index, the Latest positions

" of both the rocket and target and returns two Binary AngLe Measuements,

one Azimuth and one ELevation per caL.

-- Modifications Log

-- 88-12-05 : TEG => Original created.

-- 89-11-07 : TEG => Changed from a function to a procedure call.

with Types;

procedure Guide(ROCKETID : Types.ROCKET_INDEX_TYPE;

ROCKETPOS : Types.POSITIONTYPE;

TARGET POS : Types.POSITIONTYPE;

NEW AIMPOINT : out Types.AIMPOINT_TYPE);

--pragma INLINE(Guide);

-81-

I

Distributed Issues Final Report

----------------..------------------------ .-------------------------------

-- % UNIT: Guide Function Body.

--X Effects: Computes a new aimpoint based on rocket/target positions. --

--X Modifies: Aim-Data Rocket Info is modified. --

-%Requires: No initialization is required. -
--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest. I
-- SUBPROGRAM BODY : Guide

"'I The Guide function takes the most recent two postions of a rocket/target

pair, and computes an aimpoint for the rocket to intercept.

" Because the target is assumed to be moving, a process which

"' extrapolates the target's position forward is used. However, this section

is only called upon when the rocket is close to the target (TIMETOTARGET).

The basic theory of operation is to control the rocket attitude by changing

"1 the previous aimpoint incrementally according to the amount of change

desired in the acceleration from the last interval.

--I I
-- Modifications Log

-- 88-11-09 : TEG => Original created.

-- 89-11-14 : TEG => Equations were improved upon to be more realistic.

with Config; I
with Types;

with Math;

with Rocket;
with AVmOata;

with Aimpoint; -- function

pragma ELABORATE(Math,Aimpoint);

procedure Guide(ROCKETID : Types.ROCKETINDEXTYPE;

ROCKETPOS : Types.POSITIONTYPE;

TARGETPOS : Types.POSITIONTYPE;

NEWAIMPOINT : out Types.AIMPOINTTYPE) is

use Types; -- for operators

use AimData; -- for enumeration types AXIS (x,y,z)

use Math; -- for speedy fixed point math

accuracy : constant 1.0; -- resolution on TIME TO TARGET I
height_factor : constant := 6; -- boost done when z >- 1/6 (dist xy)

integration-interval : constant :: 4.0; -- periods to integration acceleration

integration_int_sq : constant := (integration interval-1.0) ** 2;

furthest extrapolate : constant : 300.0; -- don't bother going beyond

maxchange constant := 3.0; -- maximum change to acceleration

-82- I

Distributed Issues Final Report

Limit-rock-extrap constant Types.LONGFIXED :=Types.LONG_-FIXED(

(Config.meters-in-battLe area + Types.LONG-FIXED(1000.O)));

ROCKETVELOCi1 Aim Data.RATERECTYPE;

ROCKET VELOC-2 Aim Oata.RATEREC_TYPE;

TARGET-VELOC-1 Aim Data .RATE REC TYPE;

ROCKET ACCEL Aim Data.RATERECTYPE;

ROCK TARG DELTA Types.POSITIONTYPE;

BOOST-LIMIT Types.LONG FIXED;

ROCK-TARG-DSQOX Types.LONGFIXED;

ROCK-TARG-DSQ-Y Types.LONGFIXED;

ROCK-TARG-DSQ-Z Types.LONG FIXED;

ROCK TARGDIST Types.LONGFIXED;

ROCK-TARG-XY-D ST Types. LONGF IXED;

ROCKSQ-X Types.RATETYPE;

ROCK SQ Y Types.RATETYPE;

ROCK SQ Z Types.RATETYPE;

ROCK VELOCVECT Types.RATETYPE;

ROCK-XY-VELOC-VECT Types.RATETYPE;

TIME TO TARGET Types.LONGFIXED;

EXTRAP-TARG Types.POSITIONTYPE;

EXTRAPROCK Types.POSITIONTYPE;

DESIRED VELOC Aim-Data .RATE REC TYPE;

DESIREDACCEL Aim Data .RATE REC TYPE;

CHANGE ACCEL Aim Data.RATE-REC TYPE;

SUM Types.LONGFIXED;

SUM -VELOCITY Types.LONGFIXED;

AZIMUTH Types.BAM;

ELEVATION Types.BAM;

INTEGRATION-PERIOD :Types.LONGFIXED;

INTEGRATION SQ :Types.LONGFIXED;

beg in

-- if a new launch is taking ptace, initialize the Aim-Data data base.

if ROCKET-POS.Y = Config. Launch y and ROCKET POS.X =Config.launch_x then

Aim Data.ROCKET-INFO(ROCKET-ID).LAST-TARG TARGET-POS;

Aim Da ta.ROCKET-INFO(ROCKET-ID).CURRTARG TARGET POS;

Aim Data.ROCKET-INFOfROCKET -ID).PREV_-ROCK ROCKETPOS;

Aim Data.ROCKET-INFOCROCKETID).LAST ROCK ROCKET-POS;

Aim Data.ROCKET-INFOCROCKET-ID).CURR-ROCK ROCKETP05;

Aim-Data.ROCKET-INFO(ROCKET-ID).OLD-AIMPOINT :

(Config. launch eievation,Config. Launch azinmith);

Aim Data.ROCKETINFO(ROCKET-ID).BOOSTPHASE :=TRUE;

end if;

-- First update history of data.

Aim Data.ROCKETINFO(ROCKET_ID).LASTTARG

Aim Data.ROCKET INFO(ROCKET ID) .CURRTARG7

AimuData.ROCKETINFO(ROCKETID).CURR-TARG :=TARGET_POS;

-83-

Distributed Issues Final Report

AimOata.ROCKET INFO(ROCKET_-ID).PREVROCK :
AimOata.ROCKETINFO(ROCKETIO).LASTROCK;

AimData.ROCKETINFOCROCKETID).LASTROCK :

AimData.ROCKETINFOCROCKET_ ID).CURR ROCK;

Aim Data.ROCKET INFO(ROCKET_ ID).CURRROCK :=ROCKETPOS;I

-First check Target's Y coordinate to avoid friendly fire.

-IF ROCKET IS GOING OVER TARGET, SIMPLY SET AIMPOINT STRAIGHT DOWN.

if TARGETPOS.Y <ROCKETPOS.Y then

Aim Data.ROCKETINFO(ROCKET_ ID).OLDAIMPOINT :=(ELEVATION => -16384,

AZIMUTH => Aim Data.ROCKET_ INFO(ROCKETID).OLD-AIMPOINT.AZIMUTH);I
NEWAIMPOINT :=AimOata.ROCKETINFO(ROCKETID).OLDAIMPOINT;

return;

end if;I

Compute Rocket Velocity in all three axes.

ROCKETVELOC_1.X :=Types.RATETYPE(ROCKET POS.X-I

Aim Data.ROCKETINFO(ROCKET IO).LASTROCK.X); -- rocket change X

ROCKETVELOC_1.Y :=Types.RATETYPE(ROCKETPOS.Y -

Aim-Data.ROCKETJNFO(ROCKETID).LASTROCK.Y); rocket change YI
ROCKETVELOC_1.Z :=Types.RATETYPE(ROCKETPOS.Z

Aim Data.ROCKETINFO(ROCKETIO).LASTROCK.Z); -- rocket change Z

ROCKETVELOC_2.X :=Types.RATETYPE(

Aim Data.ROCKET INFO(ROCKET IO).LASTROCK.X-

Aim Data.ROCKETINFOCROCKETID).PREVROCK.X); -- rocket change X
ROCKETVELOC_2.Y :=Types.RATETYPE(I

Aim Data.ROCKETINFO(ROCKETID).LASTROCK.Y

Aim Data.ROCKETINFOCROCKETIO).PREV-ROCK.Y); *-rocket change Y

ROCKETVELOC_2.Z :=Types.RATE-TYPE(I
Aim Data.ROCKET_ INFO(ROCKET_ ID).LASTROCK.Z

Aim Data.ROCKErINFO(ROCKET ID).PREVROCK.Z); -- rocket change Z

-Compute Target Velocity in aLL three axes.I

TARGETVELOC_1,X :=Types.RATETYPE(TARGET POS.X

Aim Data.ROCKET_ INFO(ROCKET_ ID).LASTTARG.X); -- target change XI
TARGETVELOC_1.Y :=Types.RATETYPE(TARGET POS.Y -

Aim Data.ROCKET_ INFO(ROCKET-ID).LAST-TARG.Y); - target change Y

TARGETVELOC_1.Z :=Types.RATE TYPECTARGET _POS.Z - IAim Data.ROCKET_ INFO(ROCKET_ ID)LASTTARG.Z); -- target change Z

Compute Acceleration for Rocket in all three axes.

ROCKETACCEL.X ROCKETVELOC_1.X -ROCKET_VELOC_2.X;

ROCKET ACCEL.Y ROCKETVELOC_1.Y -ROCKET _VELOC_2.Y;

ROCKET ACCEL.Z ROCKETVELOC 1.2 ROCKET_VELOC_2.2;I

-- Compute velocity vector f ,r rocket using the forujla

-84-

Distributed Issues Final Report

-- v = sqrt(curr rock.X**2 + curr-rock.y**2 + curr-rock.z**2)

ROCKSQX ROCKETVELOC_1.X * ROCKETVELOCi .X;

ROCKSQV ROCKET VELOC-1.Y * ROCKETVELOCi1Y

ROCK SO Z :=ROCKETVELOC_1.Z * ROCKETVELOC_1.Z;

SLJMVELOCITY := Types.LONGFIXED(ROCKSOX) + Types.LONGFIXED(ROCKSQY);

ROCKXYVELOCVECT :=Types.RATETYPE(Math.Sqrt(SUMVELOCITY));

ROCKVELOC-VECT :=Types.RATETYPE(Math.Sqrt(SUM VELOCITY +

Types.LONG-FIXED(ROCKSOZ)));

-. Compute distance between rocket and target using the forujla

-- d = sqrt(d(X)**2 + d.Y**2 + d.Z**2)

-- where d(i) = currrock(i) - curr-targ(i)

ROCKTARGDELTA.X TARGET POS.X -ROCKETPOS.X;

ROCK TARG-DELTA.Y :=TARGET POS.Y -ROCKETPOS. Y;

ROCKTARGDELTA.Z TARGET POS.Z -ROCKETPOS.Z;

ROCK TARGODSQX :=ROCK TARG-DELTA.X *ROCK TARG DELTA.X;

ROCK TARG-DSO-Y ROCK TARG-DELTA.Y *ROCK TARG DELTA.Y;

ROCKTARGDSO-Z ROCK TARG-DELTA.Z *ROCK TARG OELTA.Z;

SUM : ROCK TARG OSO X + ROCK TARGDP'_Y + ROCK TARGDSQ_Z;

ROCK TARG DIST :=Math.Sqrt(SUM);

-- Compute rocket time to target, ITERATION TAKES INTO ACCOUNT

-- changes in rocket velocity and target motion (NOTE: change in

-- rocket acceleration is NOT included)

if ROCK VELOC VECT > 0.01 then

TIME TO TARGET := ROCKTARGDIST / ROCK VELOC VECT;

-- Extrapolate target position based on TIMETOTARGET.

-- Since TIME TO TARGET does not take into account rocket accelaration,

-- it tends to be way off during low rocket velocities. To reduce the

effect of this, limit the extrapolation to a reasonable period.

if TIME TO TARGET >furthest extrapolate then

TIME TO TARGET := furthest extrapolate;

end if;

EXTRAP-TAPG.X TARGET POS.X + 1ARGET VELOC 1.X * TIME-TO TARGET;

EXTRAP-TARG.Y ::TARGET POS.Y + TARGETVELOC 1.Y * TIME_TOTARGET;

-- prevent from extrapolating the target behind the rocket

if EXTRAP-TARG.Y <ROCKET POS.Y then

EXTRAP-TARG.Y :=ROCKET POS.Y;

end if;

EXTRAP-TARG.Z := TARGET POS.Z + TARGETVELOC 1.Z * TIME_TOTARGET;

-85-

Distributed Issues Final Report

else

TIME TO TARGET integration interval + 1.0;

EXTRAP-TARG.X TARGET POS .X;

EXTRAP-TARG.Y TARGETPOS.Y;

EXTRAPTARG.Z TARGET_POS.Z;I
end if;

if TIME TO TARGET <integration-interval then

INTEGRATION-PERIOD :=TIMETOTARGET / Types.WORD(2);I

if INTEGRATION-PERIOD < 1.0 then

INTEGRATION-PERIOD :=1.0;

end i f; I
INTEGRATION-SO :=(INTEGRATIONPERIOO-1.O) * (INTEGRATION PERIOD-1.O);

else

INTEGRATIONPERIOD integration-interval;I
INTEGRATION-SO integrationintsq;

end if;

-Comrpute where the ROCKET will be at the end of the INTEGRATION period.I

ALL velocities will be calculated for that point to target. Limit the

-- extrapolations to reasonable values.

EXTRAP-ROCK.X :=ROCKET POs.X + ROCKETVELOC_1.X (INTEGRATIONPERIOO-1.O) +

(ROCKET ACCEL.X / Types.WORD(2)) *INTEGRATIONSO*

if EXTRAPROCK.X >limit-rockextrap then I
EXTRAP ROCK.X l= imit-rock extrap;

end if;

EXTRAPROCK.Y :=ROCKETPOS.Y + ROCKET-VELOC-1.Y *(INTEGRATIONPERIOD-1.0) +

(ROCKET ACCEL.X / Types.WORD(2)) *INTEGRATIONSO;

if EXTRAP-ROCK.Y limit roc kextrap then

EXTRAPROCK.Y :=limit-rock extrap;

end if;I
EXTRAP ROCK.Z :=ROCKETPOS.Z + ROCKETVELOC_ 1.Z *(INTEGRATIONPERIOD-1.0) +

(ROCKETACCEL.X / Types.WORD(2)) *INTEGRATIONSO;

if EXTRAP-ROCK.Z >Limit-rock extrap then

EXTRAP-ROCK.Z :=limit-rockextrap;
end if;

ROCKTARGDELTA.X EXTRAP TARG.X -EXTRAP_ROCK.X;

RLCKTARGDELTA.Y EXTRAP-TARG.Y -EXTRAP_ROCK.Y;

ROCKTARGDELTA.Z EXTRAP TARG.Z -EXTRAP_ROCK.Z;

ROCK TARG DSQ-X ROCK-TARGDELTA.X *ROCKTARGDELTA.X;

ROCK TARG DSO-Y ROCK-TARGDELTA.Y O OCKTARGOELTA.Y;

ROCK TARGDSOZ ROCKTARGDELTA.Z *ROCKTARODELTA.Z;

SUM :=ROCK TARGODSO-X + ROCKTARGDSOY + ROCK_TARGODSOZ;

ROCKTARG-DIST :=Math.Sqrt(SUM);

ROCK TARGOXY-DIST :=Math.Sqrt(ROCK_TARG OSQ X + ROCKTARGDSOY);

-86-

Distributed Issues Final Report

Compute Desired Velocities in each axis for the end of INTEGRATION period.

If distance to target is too small to measure, then don't bother to find a

-- new desired velocity or acceleration because the rocket has already hit

-- the target by nowl

if ROCKTARGXYDIST /= 0.0 then

DESIREDVELOC.X ROCKXYVELOCVECT *

(ROCK TARG DELTA.X / ROCKTARGXYDIST);

DESIREDVELOC.Y ROCKXY VELOCVECT *

(ROCKTARGDELTA.Y / ROCKTARGXYDIST);

DESIREDVELOC.Z ROCKVELOC VECT * (ROCKTARGDELTA.Z / ROCK_TARGDIST);

Compute Desired Accelerations

DESIREDACCEL.X (DESIRED VELOC.X - ROCKETVELOC_1.X) / INTEGRATION_PERIOD;

DESIREDACCEL.Y (DESIRED VELOC.Y - ROCKET_VELOC_1.Y) / INTEGRATION_PERIOD;

DESIRED ACCEL.Z (DESIRED VELOC.Z - ROCKETJVELOCI.Z) / INTEGRATION_PERIOD;

-- Compare Current Rocket AcceLeration to Desired Rocket Acceleration

-- to produce Change in AcceLeration

end if;

CHANGEACCEL.X := DESIREDACCEL.X - ROCKETACCEL.X *

Math.SIN(AimData.ROCKETINFO(ROCKETID).OLDAIMPOINT.AZIMUTH);

-- LIMIT THE CHANGE IN ACCELERATION

if abs CHANGEACCEL.X > maxchange then

if CHANGEACCEL.X < 0.0 then

CHANGEACCEL.X -max-change;

else

CHANGE ACCEL.X max-change;

end if;

end if;

CHANGE ACCEL.Z := DESIREDACCEL.Z - ROCKETACCEL.Z;

if abs CHANGE ACCEL.Z > maxchange then

if CHANGEACCEL.Z < 0.0 then

CHANGE ACCEL.Z -max-change;

else

CHANGEACCEL.Z max-change;

end if;

end if;

-- Now translate from acceleration change requests to new aimpoint

AimData.ROCKETINFOROCKET_ID).OLO_AIMPOINT

-87-

Distributed Issues Final Report

AIMPO[NT(AimOata.ROCKET INFO(ROCKETID).OLDAIMPOINT,CHANGE_ACCEL);

Now check if BOOST PHASE, if so go UP by adjusting ELEVATION. Do not adjust

-AZIMUTH because it is atready pointing in the correct direction.

if AimData.ROCKET INFO(ROCKETID).BOOSTPHASE then

BOOSTLIMIT :=ROCK_TARG_XY-DIST / Types.WORO(height factor);

if ROCKETPOS.Z > BOOSTLIMIT then

Aim Data.ROCKET INFO(ROCKET_ ID).BOOSTPHASE :=FALSE;
end if;

Aim Data.ROCKETINFO(ROCKETID).OLDAIMPOINT.ELEVATION

Config.launch etevation;I
end if; - - boostj~hase check

NEWAIMPOINT AimData.ROCKET INFOCROCKETID).OLDAIMPOINT-

end Guide;I

-88I

Distributed Issues Final Report

-- % UNIT: GuideBuf Task Subunit

--X Effects: Provides asynchronous comm. between simulator and Control.--

-- % Modifies: No gLobaL data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitLy raised exceptions are propagated. --

-- % Engineer: T. Griest.

-- TASK BOY : Simutate.RDL.GuideBuf

The GuideBuf task acts as a buffer between the rocket data Link

-- support task Rock_Sup and the Rocket.ControL task which processes

-- the rocket data. The direction flow is from Rocket.ControL to the

-- PockSup task, even though there are only accept statements here. This is

-- to ease timing constraints. The purpose of MSGCOUNT is to aLlow Rock_iup

-- to use previous guidance messages if Rocket.ControL is Late sencing it's

-- new guidance message. However, it is set to zero at the start so

that before the main procedure gets a chance to run, Rock_Sup wiLl

-- wait at the accept for at Least one current guidance message, the

first one. After the first guidance message is received, because

-- timing of the system is derived from RockSup, RockSup no Longer will

need to wait for a new guidance message from Control. This operation

reflects the fact that the rockets will continue to travel through space

-- regardless of whether there is guidance for them or not.

-- Modifications Log

88-10-20 : TEG => Original created.

with Debug_10;

with TimeStamp;

separate (Simutate.RDL)

task body GuideBuf_Type is

use Types;

start : constant Types.WORDINDEX := 1; -- start of arrays

GUIDEMSG Rocket.ROCKETGUIDE MSGITYPE;

MSG COUNT Types.WORD := 0; -- if a message has been buffered

begin

loop

Time Stamp.Log(0040); --STP(0040) Guidebuf task start

select

accept PutGuide(DATA : in Rocket.ROCKETGUIDEMSGTYPE) do

Time Stamp.Loq(0041); --STP(0041) Guidebuf accept Put Guide start

GUIDEMSG.NUMROCKETS := DATA.NUN ROCKETS; - copy data

-89-

Distributed Issues Final Report

GUIDE MSG.ROCKETGUIDE LIST(start. .DATA.NUM ROCKETS)

DATA.ROCKET GUIDE LIST(start. .DATA.NUNROCKETS); I
MSGCOUNT :=1; -- only meaningful that it is > 0

TimeStamp.Log(O042); - -STP(0042) Guidebuf accept Put-Guide end

orend PutGuide;

when MSG-COUNT >0 =>

accept Get Guide(DATA :out Rocket.ROCKETGUIDEMSGTYPE) do
Time -Stam.Log(0043); - -STP(0043) Guidebuf accept Get_Guide startI
DATA.NUM ROCKETS :=GUIDEMSG.NUMROCKETS;

DA.TA.ROCKET GUIDE LIST(start. .GUIDE MSG.NUM ROCKETS)

GUIDE MSG.ROCKET GUIDE LIST(start. .GUIDE MSG.NUM ROCKETS);I
MSGCOUNT :=1; -- do keep multiple copies

Time_-Stamp.Log(OO44); - -STP(0044) Guidebuf accept Get_Guide end

end Get_Guide;

end select;
Time Stamp.Log(0045); --STP(0045) Guidebuf task end

end loop;

exception
when others =>

Debug_1O.Put-LineQ'GUIDEBSUF termination due to exception.");

end Guide BufType;I

-90I

Distributed Issues Final Report

--% UNIT Hardware Configuration Spec. --

--X Effects None.

-X Modifies Nothing.

--X Requires The hardware defined below. --

--X Raises No exceptions.

--X Engineer M. Sperry.

--

-- PACKAGE SPEC : HWConfig

-- I

This package is designed to familiarize the user with the hardware that

the BDS was originally implemented upon. It is implemented on a TANDY 4000

with an EGA screen, utilizing a Logitech C7 Serial Mouse on serial port CO2

-- as a pointing device. The timer chip addresses and values are defined.

-- Note : Some machine addresses (for the EGA especially) are in the package

-- MachineDependent.

-- Modifications Log

-- 89-08-08 : MPS => Original created.

-- 89-11-19 : MPS => Added timer chip addresses and constants

with Types;

with LowLevetlOD;

package HW Config is

-- The following addresses are used for this machine.

COM2_data constant LowLevel_IO.PORTADDRESS 16#2F8#;

COM2 int enable constant LowLevel_IO.PORT ADDRESS 16#2F9#;

COM2 int ident constant LowLevelIO.PORTADDRESS 16#2FA#;

COM2_control constant LowLevetIO.PORTADDRESS 16#2FB#;

COM2_modem control constant LowLevetIO.PORT ADDRESS 16#2FC#;

COM2_status constant LowLevel_IO.PORTADDRESS 16#2FD#;

pic_8259 constant LowLevellO.PORTADDRESS 16#20#;

pic8259_mr constant LowLevelIO.PORTADDRESS 16#21#;

counter two addr constant 16#42#;

timer control addr constant 16#43#;

end HWConfig;

-91-

I
Distributed Issues Final Report

-- X UNIT: InterruptControl Package Spec. and Body. --

--x Effects: Provides control over interrupt flags. --

-- M Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: N. Sperry.

-- PACKAGE SPEC : InterruptControl

- - The purpose of the InterruptControl package is to provide Ada Level

-- semantics for disabling and enabling interrupts on the 80X86 family of
processors. Also for clearing the direction flag because of an RTE bug
which does not always clear it.

-M Modifications Log

-- 88-11-20 : MPS => Original created.

with Machine-Code;

use Machine-Code;

pragma ELABORATE(MachineCode);

package InterruptControt is

pragma SUPPRESS(Elaboration Check);

procedure Disable;

pragma INLINE(Disabie);

procedure Enable;

pragma INLINE(Enabte);

procedure ClearDirection_Flag;

pragma INLINE(ClearDirectionFlag);

end Interrupt-Control;

-I I
-- PACKAGE BODY : InterruptControl

I lnterruptControt is implemented with machine code statments. The

-- suppression of the elaboration check is used to make the inining of

- these machine instructions as short as possible.

-II

package body InterruptControl is

I
-92- 1

Distributed Issues Final Report

procedure Disable is
beg in

MACHINE INSTRUCT ION '(none,nm CLI);

end Disable;

procedure Enable is

beg in

MACHINEINSTRUCTION'(none~mSTI);

end Enable;

procedure CLear Direction-FLag is

begin

MACHINE INSTRUCTION' (rone,m-CLD);

end ClearDirection Flag;

end Interrupt-Control;

-93-

I
Distributed Issues Final Report

--X UNIT: Machine-Dependent Package Spec. --

-- Effects: Provides machine dependent operations for enhanced speed. --

--X Modifies: No global data is modified. --

--X Requires: Graphics mode, and initialization of timer channel two. -- I
--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: M. Sperry.

PACKAGE SPEC : MachineDependent

- - Package Machine-Dependent contains machine code statements to perform

-- tow level graphics functions, including an interface to the BIOS routines

-- found on the EGA (for text processing). Note that these instructions

are intined to enhance speed.

Also implemented are routines which perform fixed point multiplications

-- and divisions in machine code for speed enhancements.

- - And, a procedure which returns the value in the channel two counter.

-- Modifications Log

-- 88-11-04 : MPS => Original created.

-o 89-08-24 : MPS => Specifications for fixed math routines incorporated. I
-- 89-11-21 : MPS => NextRandom created.

with Machine-Code;

with Graphics;

with Types;

use Machine-Code;

pragma ELABORATE(MachineCode);

package Machine-Dependent is I
start-countdown : constant := 16#82#; -- mode 2, channel 2

max timer value : constant : 256; -- channel 2 LSB divisor

procedure PutPixet(ABSX, ABSY : Types.COORDINATE;

COLOR : Graphics.COLORTYPE); I
pragma INLINE(PutPixel);

procedure Write Mode 0;

pragma INLINE(Write Mode 0);

-- Provide a mechanism to call ROM located routine to initialize screen

procedure IntlO(BIOSFUNCTION : Types.WORD;-- spec to BIOr graphics call

-94- I

Distributed Issues Final Report

PARA-1 Types.WORD;

PARAM - Types.WORD);
pragma INTERFACE(ASM86, IntlO);

pragma INTERFACE SPELLING(IntlO, 'HD1BIOS?GRAPHICSCALL");

procedure write -Mode 2;

pragme INLINE(Write Mode 2);

procedure LongLongMuI.(LEFT,RIGHT Types.LONG_FIXED;

RESULT out Types.LONGFIXED);

pragme INLINE(LongLongMul);

procedure LongLong Div(LEFT,RIGHT Types.LDNGFIXED;

RESULT out Types.LONGFIXED);

pragma INLINE(LongLongDiv);

procedure LongWordDiv(LEFT Types.LONG_FIXED;

RIGHT Types.WORD;

RESULT out Types.LONGFIXED);

pragma INLINE(LongWord Div);

procedure Meters Meters Div(LEFT,RIGHT :Types.METERS;

RESULT :out Types.METERS);

prague INLINE(MetersMetersDiv);

procedure Meters Word Div(LEFT Types.METERS;

RIGHT Types.WORO;

RESULT out Types.METERS);

pragma INLINE(Meters Word Div);

procedure Meters MetersMuLCLEFT,RIGHT Types.METERS;

RESULT out Types.METERS);

pragnia INLINE(MetersMeters_Mut);

procedure Rate Rate Mut(LEFT,RIGHT Types.RATETYPE;

RESULT out Types.RATETYPE);

pragm INLINECRate Rate Hut);

procedure Rate Rate Div(LEFT.RIGHT Types.RATETYPE;

RESULT out Types.RATETYPE);

pragma INLINE(Rate Rate Div);

procedure Rate Word Div(LEFT Types.RATETYPE;

RIGHT Types.WORD;

RESULT out Types.RATETYPE);

prague INLINE(Rate Word Div);

procedure LongRate Div(LEFT Types.LONGFIXED;

RIGHT Types.RATETYPE;

RESULT out Types.LONGFIXED);

prague INLINECLoN RateDiv);

-95-

Distributed Issues Final Report

procedure RateLongDiv(LEFT Types.RATETYPE;

RIGHT Types.LONGFIXED;

RESULT out Types.RATETYPE);

pragma INLINE(RateLongDiv);

procedure RateLong_Long_MuL(LEFT Types.RATETYPE;

RIGHT Types.LONGFIXED;

RESULT out Types.LONGFIXED);U
pragma INLINE(Rate LongLongMut);

procedure Rate Long Rate MuL(LEFT Types.RATETYPE;

RIGHT Types.LONGFIXED;

RESULT out Types.RATETYPE);

pragma INLINECRateLongRate Nut);

procedure NextRandomn(CHANNEL_TWO_VALUE out Types.WORD_INDEX);

pragma INLINE(Next Randomn);

end Machine-Dependent;

-96-

Distributed Issues Final Report

--% UNIT: MachineDependent Package Body. --

--X Effects: Provides graphics machine dependencies.

-- M Modifies: No global data is modified.

--X Requires: No initialization is required (other than graphics mode). --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: M. Sperry.
..

PACKAGE BODY : MachineDependent

A package which makes use of the functionality of the BIOS routines

-- found in an EGA card to perform some graphics processing. Note that

-- some register level EGA programming is performed.

Also, the timer chip channel two functions are utilized to generate

-- pseudo random numibers.

-- Modifications Log

-- 88-08-25 : MPS => Original created.

89-08-24 : MPS => Incorporated fixed math routine bodies for speed.

-- 89-11-28 : MPS => developed NextRandom procedure.

with HW_Config;

package body MachineDependent is

hi _resgraphics : constant := 16#10#; -- graphics mode

set cursor : constant := 16#0200#; -- set cursor function

pagezero constant := 16#00#; -- set cursor to active page

write-function constant : 16#OE#;

indexregister : constant := 16#3CE#; -- port address

accessregister constant := 16#3CF#; -- port address

moderegister : constant := 5; -- index register 5

write mode_2_vat : constant : 2;

write mode 0 vat : constant := 0;

procedure PutPixet(ABSX, ABS_Y : Types.COORDINATE;

COLOR : Graphics.COLORTYPE) is

SUBPROGRAN BODY : Machine_Dependent.PutPixel

An assembty Level procedure (for enhanced speed) to place a dot on the EGA

screen. Write mode two is used here (again, for enhanced speed). It is

important to note that this routine could be called up to 1235 times per

-97-

Distributed Issues Final Report

interval.

begin

-- The first thing to do is find out which bit must be turned on. This is

-- done by taking SHR(80h, ABSX mod 8). The bit ordering goes from 7 -> 0.

MACHINEINSTRUCTION'(registerregister, mMOV, CX, CX); -- defeat compiler bug

MACHINEINSTRUCTION'(register_immediate, mMOV, DX, 16#3CE#); -- select bit

MACHINEINSTRUCTION'(register_irmmediate, mMOV, AL, 8); -- mask register l
MACHINEINSTRUCTION'(registerregister, mOUT, DX, AL); o- in graphics chip

Determine which bit must be turned on. This is

-- done by taking SHR(80h, ABSX rem 8), reversing the bit ordering.

MACHINEINSTRUCTION'(registersystemaddress. mMOV, CX, ABS_X'address); --X

MACHINEINSTRUCTION'(registerregister, mMOV, BX, CX); -- make copy of X

MACHINEINSTRUCTION'(register_irmmediate, mAND, CL, 7); -- mask for bit #

MACHINEINSTRUCTION'(register_immediate, mMOV, AL, 16#80#); -- most significant bit is

MACHINEINSTRUCTION'(register-register, mSHR, AL, CL); -- bit zero, do bit reversaL. I
-- AL now holds the bit mask. Now give it to the bit mask register Located

-- at 16#3CF#.

MACHINEINSTRUCTION'(register, m_.INC, DX); -- increment port address to 3CF

MACHINEINSTRUCTION'(register-register, mOUT, DX, AL);

-- Now, Latch the byte of graphics memory. The byte to Latch

-- is defined as (ABSY * 80) + (ABSX / 8). Then, when giving

-- it back, place the color in AL. Note that only four bits of the color are

-- significant and that the color placed in AL is not actually a color, but a

-- palette register selection (from 0 to 15). The color in the palette
-- register is the color displayed.-16#6000# is Loaded (= AOOH)
-- to point to the EGA graphics page zero memory address.

MACHINEINSTRUCTION'(registersystem-address, mMOV, AX, ABSY'address);--Y

MACHINEINSTRUCTION'(register_imediate, mMOV, CX, 80); -- bytes/Line

MACHINEINSTRUCTION'(register, mMUL, CX); -- ABSY * 80 in AX

MACHINEINSTRUCTION'(registerimiediate, mMOV, CL, 3); -- Shift Count

MACHINE INSTRUCTION'(register register, mSHR, BX, CL); -- ABSX / 8 in BX

MACHINEINSTRUCTION'(registerregister. m_ADD, BX, AX); -- 8X is offset

MACHINEINSTRUCTION'(register_immediate, mMOV, AX, -16#6000#); -- base of RAM

MACHINEINSTRUCTION'(registerregister, mMOV, ES, AX);

- Latch the palette selection. Note that the contents of AL upon return are

-- meaningless, and that the color is latched internally to the EGA's four bit I
-- planes.

-98- I

Distributed Issues Final Report

-- mov AL,ES: fOX3

MACHINE_ INSTRUCTION'(register address, m-MOV, AL, ES, BX, nit, SCALE_1, 0);

MACHINEINSTRUCTION'(register system address, miMOV, AX, COLOR'address);

-Finally, give the palette selection (color) to the four bit planes.

-mov ES: [DXI,AL

MACHINEINSTRUCTION'(address register, mNOV, ES, BX, nil, SCALE_1, 0, AL);

end PutPixel;

procedure Write Mode 0 is

-- SUBPROGRAM BODY : Machine-Dependent.Write Mode 0

A procedure used to change the write mode of the screen to mode 0,

-. for text writing. This procedure is called before writing any tFext.

begin
MACHINE INSTRUCTION'(register immediate, miMOV, DX, index~register);

MACHINE INSTRUCTION'(register immediate, miMOV, AL, mode-register);

M4ACHINEINSrRUCTION'(register-register, m-OUT, OX, AL);

MACHINE INSTRUCTION'(register-iffmiediate, miMOV, DX, access register);

MACHINE INSTRUCTION'(register ifnnediate, miMOV, AL, write-mode_0 vat);

MACHINE INSTRUCTION'(register register, mOUT, DX, AL);

end WriteMode_&;

procedure Write Mode 2 is

SUBPR(7RAM BODY : Machine Dependent.WriteMode_2

A procedure used to change the write mode of the screen to mode 2, which

facilitates the process of pixel ptotting. This routine is cal led after

-Iwriting the necessary statistics titles, etc.

begin

MACHINE INSTRUCTION'(register inviediate, miMOV, DX, index register);

MACMINE INSTRUCTION'(registeri immeiate, niMOV, AL, mode register);

MACHINE INSTRUCTION'(register register, mOUT, DX, AL);

MACHINEINSTRUCTIONd'(register imnmediate, MiMOV, DX, access register);

MACHINE INSTRUCTION'(register innuediate, niMOV, AL, write~mode_2vat);

MACHINE !NSTRUCTION'(register register, mOUT, DX, AL);

end Write-Mde2;

SUBPROGRAM BODY :Machine Deperident.Fixed Math routines

-99-

Distributed Issues Final Report

These routines are written in 80386 32-bit code optimized for the

--Itypes on which they operate for maximum speed. They are treated as aI
- resource.

procedure LongLong _Mut(LEFT,RIGHT Types.LONGFIXED;I

RESULT out Types.LONG_FIXED) is

beginI
MACHINE INSTRUCTION' (none,m CLI);

MACHINE INSTRUCT ION '(reg ister system -address ,m LEA,DX, LE FT' address);

MACHINE INSTRUCTION'(irmnediate,m DATAB, 16#66#);I
MACHli4E INSTRUCTION'(register address ,m-MOV ,AX, SSBX,niL,scate_1,0);

MACHINE INSTRUCTION(invediate,m DATAB,16#66#); -- 32 bit override

MACHINE_ INSTRUCTI0N'(systemn-address ,m IMUL ,RIGHT 'address);

MACHINEINSTRUCTION(registerimmediate ,rn-OV ,CX ,6);
MACHINEINSTRUCTI)N'(ifnediate,m-DATAB,16#66#); -- 32 bit override

MACHINEINSTRUCTION'(irmnediate mDATAB,16#66#);

MACHINEINSTRUCTION(irrnediate mDATAB,16#OF#); -- SHRD EAX,EDX,CL
MACHINE INSTRUCTION'(irmmediate ,rnDATAB,16#AD#);

MACHINEINSTRUCTION'(irmnediate,m-DATAB,16#DO#);

MACHINEINSTRUCTION(imeiate,m-DATAB,1666); -- 32 bit overrideI
MACHINEINSTRUCTION' (systemn-address-register,m-MOV,RESULT'address,AX);

MACHINEINSTRUCTION'(none,m-STI);

end LongLong _Mul;

procedure LongLong_Div(LEFT,RIGHT Types.LONGFIXED;

RESULT out Types.LONG_FIXED) is

beginI
MACHINE INSTRUCT ION '(none,m CLI);
MACHINE_ INSTRUCTION'(registersystem-address,m-LEA,BX,LEFT'address);

MACHINEINSTRUCTION'(irmniediate , mDATA,166)#)I

MACHINE_ INSTRUCTION'(register address ,rn-OV,AX, SS,BX,nil,scale_1,0);

MACHINE INSTRUCTION'(irmnediate mDATAB,16#66#);

MACHINE INSTRUCTION'(none,m-CWD); -- CDO

MACHINE INSTRUCTION'(register innediate,mMOV,CX,6);I

MACHINEINSTRUCTION'(iimnediate,m DATAU,16#66#); -. 32 bit override

MACHINE INSTRUCTION'(iindiatem _DATAB,16#OF#); -. SHLD EDX,EAX,CL

MACHINE INSTRUCTION' Cinmnediate,m DATAB, 16#A5#);I
MACHINEINSTRUCTION(imnediate,mrnDATAB,16#C2#);

MACHINE INSTRUCTION'(inwediate,m DATAB, 16#66#);

MACHINE INSTRUCTION'(register register, mSHL ,AX ,CL);

MACHINE INSTRUCTION'(ifrmediate,m DATAB,16#66#); -- 32 bit override
MACHINEINSTRUCTION'(system-address ,m IDIV,RIGHT 'address);

MACHINEINSTRUCTION'(irruediate,m-DATAB,16#66#); -- 32 bit override
MACM INE_ INSTRUCTION' (system-address-regi ster,m-MOV,RE SUL TIaddress, AX);I
MACHINE INSTRUCTION' Cnone,m-STJ);

end LongLongDiv;

-100-

Distributed Issues Final Report

procedure Long_ WordDiv(LEFT Types.LONGFIXED;

RIGHT Types.WORD;

RESULT out Types.LONGFIXED) is

beg in

MACNINE INSTRUCTION' (none,m -CLI);

MACHINE INSTRUCTION' (register_system-iddress,m-LEA,BX,RICHT'address);

MACHINE INSTRUCTION'(register_address m-MOV,AX,SS,BX,niL,sca~e_1,0);

MACHINE INSTRUCTION'(imiediate,mDATAB,16#66#);

MACHINEINSTRUCTION'(none,m CBW); -- this instruction performs a C.JDE

MACHINEINSTRUCTIOMnmiediate,m DATAB,16#66);

MACHINE INSTRUCT ION '(register reg ister ,m M4OV,aX , AX)

MACHINE INSTRUCTION'(register_system_address ,rnLEA ,SI,LEFT'address);

MACHINEINSTRUCTIOM'(irnewdiate~m-DATAB,16#66#);

MACHINE-INSTRUCTIOW'(register~address ,mrMOV, AX,SS ,Si,niL,scate_1,O);

MACHINE INSTRUCTION'(inuiediate,mDATAB,16#66#);

MACHINE INSTRUCTION'(none,m CWD); -- this instruction performs a CDQ

MACNINEINSTRUCTION'(irmmediate,m-DATAB,16#66#);

MACNINEINSTRUCTION'(register,m-IDIV,BX);

MACHINEINSTRUCTION'(inrnediate,mnDATAB,16#66#);

MACHINE INSTRUCTION' (systemn-address_register,m-MOV,RESULT'address,AX);

MACHINE INSTRUCTION' (none,m-STI);

end LongWord Div;

procedure Meters MetersMul(LEFT,RIGHT Types.9ME ERS;

RESULT out Types.METERS) is

begin

MACHINEINSTRUCTION'(register register, m-MOV, CX, CX); -- defeat compiter bug

MACHINEINSTRUCTION'(registersystemaddress,mMOV,AX,LEFT'address);

MACHINE INSTRUCTION' (system-address, mIMUL,RIGHT'address);

MACNINEINSTRUCTION'(register irfimediate ,m-NOV ,CX ,3);

MACNINE INSTRUCTION'(irmmediate~m DATAB,16#0F#); -- SHRD AX,DX,CL

MACHINEINSTRUCTION'(imieiate,m-DATAB,16#AD#);

MACHINE INSTRUCTION'(imediate,m DATAB, 16#DO#);

MACHINE_ INSTRUCTION' (system-address_register,m-MOV,RESULT'address,AX);

end MetersMetersMul;

procedure MetersMeters Div(LEFT,RIGHT Types.METERS;

RESULT out Types.METERS) is

begin

MACHINE INSTRUCTION'(register_register, m-NOV, CX, CX); -- defeat compiLer bug

MACNINEINSTRUCTION'(register_system-address m_40V,AX,LEFT'address);

MACNINF INSTRUCTION' (none,mCWD);

MACNINEINSTRUCTION'(register-imiediate mNOV CX,3);

MACHINE INSTRUCTION '(reg ister reg ister,mSHL ,AX ,CL);

MACHINE INSTRUCTION'(system-address m_ IDIV,RIGHT'address);

MACHINE INSTRUCTION'(systemn-address_register,m_MOV,RESULT'address,AX);

end Meters Meters 0 iv;

procedure Meters Word Div(LErT Types.METERS;

RIGHT Types.WORD;

RESULT out Types.METERS) is

Distributed Issues Final Report

begin

MACHINE_ INSTRUCTION'(register register, mMOV, CX, CX); -- defeat coapiLer bug
MACHINEINSTRUCTION' (register system address, mMOV,AX,LEFT'address);

MACNINE_INSTRUCTION' (none,m CUD);

MACHINE_INSTRUCTION'(registersystem-address,mMOV,BX,RIGHT'address);I
MACHINEINSTRUCTION'(register,m-IDIV,BX);

MACHINE INSTRUCTION' (systemn-address-register,m-MOV,RESULT'address,AX);

end MetersWordDiv;

procedure RateRateMut(LEFT,RIGHT Types.RATETYPE;

RESULT out Types.RATE_TYPE) is

begin

MACHINEINSTRUCTION'(none,m CLI);

MACHINE_ INSTRUCTION'(register system address mLEA,BX,LEFT'address);I

MACHINEINSTRUCTION(irwediate mDATAB,16#66#);

MACHINEINSTRUCTION'(register-address,m-MOV,AX,SSBX,niL,scate_1,O);

MACHINE_ INSTRUCTION'(iimmediate,m-DATAB,16#66#); -- 32 bit override

MACHINE_ INSTRUCTION'(system-address , mIMUL ,RIGHT 'adldress);I

MACHINEINSTRUCTION'(register irmnedia te,m-MOV,CX,16);

MACHINE_ INSTRUCTION'(irmiediate rn-DATAB,1#);

MACHINE INSTRUCTION(immwediate mDATAB,16#OF#); -- SHRD EAX,EDX,CLI
MACHINEINSTRUCTION(iiieiatem mATAB,16#AD#);

MACHINEINSTRUCTION'(inwneiate,mrnDATAB,1#O#);

MACHINE INSTRUCTION'(irmiediateMDATAB,16#66#); -- 32 bit override

MACHINE INSTRUCTION'(systemn-address_register,m-MOV,RESULT'address,AX);
MACHINE- INSTRUCTION'(none,m-STI);

end RateRateMul;

procedure RateRateDiv(LEFTRIGHT Types.RATETYPE;

RESULT out Types.RATE_TYPE) is

begin
MACHINEINSTRUCTION'(none,m CLI);

MACHINE_ INSTRUCTION'(registersystem-address,m-LEA,BX,LEFT'address);

MACHINEINSTRUCTION(irminediate mDATAB,16#66#);

MACHINE INSTRUCTION'(register_address,m-MOV,AX,SS,BX,ni L,scate_1,O) I
MACHINEINSTRUCTION'il1wneiate mDATAB,16#66#); -- 32 bit override

MACHINE_ INSTRUCTION'(none,m CUD); -- performs a CDO

MACHINEINSTRUCTION'(register-imediate ,m-MOV ,CX ,16);I
MACHINE INSTRUCTION'0iw3meiate mOATAR,16#66#); -- 32 bit override

MACHINE INSTRUCTION'(imediate,m DATAB,16#OF#); -- SHLD EDX,EAX,CL

MACHINE INSTRUCTION' (irmediate,m DATAB, 16#A5#);

MACHINE INSTRUCTION'(invnediate ,rnDATA,1#2#);

MACHINE INSTRUCTION'(iwmmediate mDATAB,16#66#);

MACHINEINSTRUCTION'(registerregister,mSHL,AX,CL);

MACHINEINSTRUCTION'(irediate,m-DATAB,16#66#);I

MACHINE_ INSTRUCTION' (system-address,m-IDIV,RIGHT'address);

MACHINE INSTRUCTION'(irrmediate,m OATAB,16#66#); -- 32 bit override

MACHINE INSTRUCTION' (systemn-address_register,m-MOV,RESULT'address,AX);

MACHINE INSTRUCTION'(none,m STI);

end Rate Rate D v;

1 2

Distributed Issues Final Report

procedure RateWord Div(LEFT Types.RATE_TYPE;

RIGHT Types.WORD;

RESULT out Types.RATETYPE) is

begin

MACHINE INSTRUCT ION '(none,in CLI);

MACHINE INSTRUCTION'(register_system-address ~rnLEA,BX,RIGHT'address);
MACHINE INSTRUCTION'(registeraddress,m-MOV,AX,SS,BX,nit,scaie_1,0);

MACHINEINSTRUCTION'(i...ediate,m mATAB ,16#66#);

MACHINE INSTRUCTION'(none,in- CBW); -- this instruction performs a CWDE

MACHINEINSTRUCTION'(irun.ediate,m-DATAB,16#66#);

MACHINEINSTRUCTION' (register-register,m MOV,BX,AX);

MACHINE INSTRUCTION'(register system address,m LEA,SI ,LEFT'address);

MACHINEINSTRUCTION(immiediate ,m DATAB ,16#66#);

MACHINEIHSTRUCTIONI(register~address , iMOV, AX, SS ,SI,nit,scaie_1,O);

MACHINEINSTRUCTIONinmied iate ,i DATAB ,16#6-6#);

MACHINEINSTRUCTION'(none,inCWD); -- this instruction performs a CDO

MACHINE INSTRUCTION' (ininediate,inDATAB,16#66#);

MACHINE INSTRUCTION' (register,inIDIV,BX);

MACHINE INSTRUCTION' Cimdiate,inDATAB,16#66#);

MACHINE INSTRUCTION'(system -address_register inMOV,RESULT'address,AX);

MACHINE INSTRUCT ION ' Cnone,in STI);

end Rate Word Oiv;

procedure Rate Long_Long_MuICLEFT Types.RATE_TYPE;

RIGHT Types.LONG_FIXED;

RESULT out Types.LONG_FIXED) is

begin

MACHINE INSTRUCTION' (none,in CLI);

MACHINE INSTRUCT ION 'Creg ister system address ,m LEA, BX ,LE FT' address);

MACHINE INSTRUCTION'(irwnediate ,m DATAB ,16#66#);

MACHINEINSTRUCTION'(register-address ,in-OV,AX, SS ,Bx,niL,scaie_1,O);

MACHINEINSTRUCTION(iinediate,inDATAB .16#66#); -- 32 bit override

MACHINE_ INSTRUCTION'(system -address ,inI MUL,RIGHT'address);

MACHINEINSTRUCTION'(register immediate ,mNMOV,CX,16);

MACHINE INSTRUCTION' (innediate,rn DATAB, l6#66#);

MACHINE INSTRUCTION'IO..,ediate,m DATAB,16#OF#); -- SHRO EAX,EDX,CL

MACHINEINSTRUCTION'(irmiediate,m-DATAB,16#AD#);

MACHINEINSTRUCTION'(i...ediate,MnDATAB,16#DO#);

MACHINE INSTRUCTION'(i..., iate,m DATAB,16#66#); -- 32 bit override

MACHINEINSTRUCTION'(system address_register inMOV,RESULT'address,AX);

MACHINE INSTRUCT ION '(none,m STI);

end RateLongLong_,Nut;

procedure RateLong_RateMutCLEFT Types.RATETYPE;

RIGHT rypes.LONGFIXED;

RESULT out Types.RATETYPE) is

beg in
MACHINE INSTRUCT ION '(none,in CLI);

-103-

Distributed Issues Final Report

MACHINE INSTRUCTION'(register_systemn-address, MLEA,BX,LEFT'address);

MACHINE INSTRUCTION'(register_address ,m-MOV,AX ,SS,BX,nit,scaie_1,O);

MACHINE INSTRUCTION'(inwnediate,m DATAB,16#66#); -- 32 bit override

MACHINEINSTRUCTION'(systemnaddress,mIMUL,RIGHT'address);I
MACHINE INSTRUCTION'(register immedia te,m-MOV,CX,6);

MACHINEINSTRUCTION'(inunediate,m-DATAB,16#66#);

MACHINEINSTRUCTION'(invnediate,m-DATAB,16#OF#); -- SHRD EAX,EDX,C.

MACHINE INSTRUCTION' Cimnediate,m-DATAB,16#AD#);U

MACHINEINSTRUCTION'(irmmediate,m-DATAB,16#OO#);

MACHINE INSTRUCTION'(ifnnediate,m DATAB,16#66#); -- 32 bit override

MACHINE INSTRUCTION'(systemn-address-register,mNMOV,RESULT'address,AX);I
MACHINE INSTRUCTION' (none,m-STI);

end Rate LongRateMut;

procedure LongRateDiv(LEFT Types.LONGFIXED;

RIGHT Types.RATETYPE;

beinRESULT out Types.LONGFIXED) is

MACHINE INSTRUCTION'(none,m CLI);

MACH INE INSTRUCT ION '(register system address,m LEA, BX, LEFT' address);

MACHINE INSTRUCTION'(irrmediate,m DATAB, 16#66>#);I
MACHINE INSTRUCTION'(register-address,mMOV,AX,SS,BX,nit,scaie_1,O);

MACHINE INSTRUCTION'(inneiate,m DATAB,16#66#); -- 32 bit override

MACHINE INSTRUCTION'(none,m CWD); -- performs a CDO

MACHINE INSTRUCT!ON'(registerj ineiate, mMOV, CX,16);

MACHINE INSTRUCTION'(irmiediate,m DATAB,16#66#); -- 32 bit override

MACHINEINSTRUCTION'(irmeiate ,mrnDATAB,16#OF#); -- SHID EDX,EAX,CL
MACHINE INSTRUCTION'~ Cimeiate,m DATAB, 16#A5#);I
,ACHINE-INSTRUCTION(immuediate mDATAB,16#C2#);

MACHINEINSTRUCTION'(irmiediate mDATAB,16#66#);

MACHINE_ INSTRUCTION'(registerregister,m-SHL,AX,CL);I
MACHINE_ INSTRUCTION'(iniediate,mDATAB,16#66#);

MACHINE INSTRUCTION'(system-address m-IDIV,RIGHT 'address);

MACHINEINSTRUCTION(irvediate mDATAB,16#66#); -- 32 bit override

MACHINE INSTRUCT ION ' Csystem address reg ister,m MOV, RESULT' address ,AX) I
MACHINE INSTRUCTION' (none,mnSTI);

end LongRate Div;

procedure RateLong ODiv(LEFT Types.RATETYPE;

RIGHT Types.LONGFIXED;

bgnRESULT out Types.RATETYPE) isI

MACH INE INSTRUCT ION '(none,m -CLI);

MACHINE INSTRUCTION'(register system -addressmLEA,8X,LEFT'address);

MACHINE INSTRUCTION'(infiediate,m DATAB, 16#66#);

MACHINE INSTRUCTION(reqisteraddress,mNMOV,AX,SS,BX,niL,scalel1,0);

MACHINE INSTRUCTION'(immediate,m DATA9,16#66#); -- 32 bit override

MACHINE INSTRUCTION'(nonie,m CWD); -- performs a CDO

MACHINE INSTRUCTION'(registerj imeiate ,m MOV,CX ,6);

MACHINE INSTRUCTION'(i.nnediate,m DATAB,16#660); -- 32 bit override

-104-

Distributed Issues Final Report

MACHINEINSTRUCTION'(iimnediate,m-DATAB,16#OF#); -- SHLD EDX,EAX,CL

MACHINEINSTRUCTION'(inuuediate , m DATAB, 16#A5#);

MACHINE INSTRUCTION'(jrmmediate , m OATAB, 16#C2#);

MACHINEINSTRUCTIONd'(irmiediate ,m DATAB ,16#66#);

MACH INE INSTRUCT ION '(register reg ister ,mSHL ,AX ,CL);

MACHINEINSTRUCTION'(inned iate mDATAB,16#66#);

MACHINE INSTRUCTION'(systen -address, m IDI V,RIGHT'address);

MACHINEINSTRUCTION'(innediate,m-DATAB,16#66#); -- 32 bit override

MACHINEINSTRUCTIOM(systemaddressregister,m-MOV,RESULT'adidress,AX);

MACHINEINSTRUCTION'(none,m-STI);

end RateLongDiv;

procedure Next Randomn(CHANNEL TWOVALUE :out Types.WORD_INDEX) is

*-fSUBPROGRAM BODY :Machine Depenclent.NextRandomn

-- This function returns the value of the numbner at the address of the

--Ichannel two counter. It is assumed that the initialization of that channel

-- is previously performed. Therfore it returns a value between 0 and 255.

begin

MACHINE INSTRUCTION'(register register, mnMOV, CX, CX); -- defeat compil~er bug

MACHINE INSTRUCTION'(register_irrwnediate,m-MOV, DX,NWConfig.counter_two_addr);

M4ACHINE INSTRUCTION'(register_register,m-IN,AL,DX);

MACN INE INSTRUCT ION '(reg ister-reg ister ,m XOR ,A , AH);

MACHINEINSTRUCTION'(system-addressregister,mMOV,CHANNEL_TWO_VALUE'address,

AX);

end NextRandom;

procedure InitializeTimer Two is

SUBPROGRAM BODY :MachineOependent.Initialize TimerTwo

-I A procedure used to start the channel 2 counter counting down from
max timer_value to zero over and over to generate numb~ers.

begin

MACHINE INSTRUCT ION '(register ifrvnediate,m NOV, DX,

HW -Config.timer_control addr);

MACHINE INSTRUCTION' (register imediate,mMOV,AX,start_countdown);

MACHINE INSTRUCTIOM'(register register, m-OUT, DX, AL);

MACHINE INSTRUCTION' (register imediate,mMOV,DX,HWConfig.counter_two_addr);

MACHINEINSTRUCTION'(register irmidiate,M-MOV,AX,max_timer_value);

MACHINE INSTRUCTION'(register register, a OUT, DX, AL);

-The first out byte was the LSB. Now take care of MSB.

-105-

Distributed Issues Final Report

MACHINEINSTRuCTION'(register irmediate,mMOV,DX,HW_Config.counter_two_adidr);

MACHINE INSTRUCTION'(register-ilmnediate,mMOV,AX,max_timer_vatue);I
MACHINE INSTRUCTION'(register register, mOUJT, DX, AL);

end Initialize T imerTwo;

pragma INLINE(Initialize TimerTwo);

beg in

InitiaLize TimerTwo;

end Machine Dependent;

-106I

Distributed Issues Final Report

--X UNIT: Math Package Spec.

--% Effects: Compute various functions: Tan, Arc Tan, and Sqrt. --

-- % Modifies: No global data is modified. --

--X Requires: No initialization is required.

--X Raises: No explicitly raised exceptions are propagated.

--x Engineer: Various.
..

" PACKAGE SPEC : Math

" Math is responsible for implementing the necessary math functions of

the BDS. Some of the transcedental functions are approximations using

"'1 table Look-ups. The fixed point routines which perform basic multiply

and divide operations are made visible to replace the runtime supplied

"' routines which are too general (and thus too stow for the BDS's needs.

" The Get_RandomNum function uses the channel two timer to return a

number from 0 to the Limit specified.

Modifications Log

88-10-09 : TEG => Original created.

89-08-24 : MPS => Fixed point routines were made visible.

89-09-11 : MPS => Sin,Cos added from intern code.

-- 89-11-08 : MPS => General Power routine added.

89-11-08 : MPS => Arcsin routine added.

-- 89-11-08 : LJG => Arctan routine was made more precise.

-- 89-11-20 : MPS => GetRandom Num routine moved from TargSup to Math.

with Types;

package Math is

function "*h"(LEFT,RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED;

--pragma INLINE("'");

function "/"1(LEFT,RIGHT : Types.LONGFIXED) return Types.LONGFIXED;

--pragma INLINE("/");

function "/"(LEFT : Types.LONG FIXED;

RIGHT : Types.WORD) return Types.LONGFIXED;

--pragma INLINE("/");

function u*"(LEFT,RIGHT : Types.METERS) return Types.METERS;

--pragma INLINE("");

function "/"(LEFT,RIGHT : Types.METERS) return Types.METERS;

-107-

Distributed Issues Final Report

* -pragma INLINE(/");

function 94/1(LEFT Types.METERS;

RIGHT Types.WORD) return Types.METERS;

- -pragma INLINE(I"/1);

function "11(LEFT,RIGHT Types.RATETYPE) return Types.RATETYPE;

-pragma INLINE(11"1);

function "1/"(LEFT,RIGHT Types.RATETYPE) return Types.RATETYPE;

--pragma INLINdE(II/1);

function "/'(EFT Types.RATETYPE;

RIGHT Types.WORD) return Types.RATETYPE;

-pragma INLINE(11/6);

function ""I(LEFT Types.RATETYPE;

RIGHT Types.LONG FIXED) return Types.RA1'E_TYPE;

- -pragma INLINE(h1*);

function ""I(LEFT Types.RATETYPE;

RIGHT Types.LONG FIXED) return Types.LONG_FIXED;I
- -pragma INLINE(1*);

function "(LEFT Types.LONGFIXED;

RIGHT Types.RATE TYPE) return Types.LONGFIXED;I
--pragma INLINE(II/1);

function "/"(EFT Types.RATETYPE;

RIGHT Types.LONG FIXED) return Types.RATE_TYPE;

--pragma INLINE(1"/");

function Power (BASE, RAISEDTO :Types.LONGFIXED) return Types.LONGFIXED;

function Sin (ANGLE Types.BAM) return Types.LONGFIXED;

function Cos (ANGLE Types.BAM) return Types.LONGFIXED;

function Tan (ANGLE Types.BAM) return Types.LONGFIXED;

function Arcsin (THETA :Types.LONG_FIXED) return Types.LONGFIXED;-- in degrees

function Arctan (Z INPUT :Types.LONGFIXED) return Types.BAN;

function Sqrt (X :in Types.METERS) return Types.METERS;

function Sqrt (X :in Types.LONGFIXED) return Types.LONGFIXED;

fun~ction Sqrt (X :in Types.RATE_TYPE) return Types.RATETYPE;

function Get RandomNun (LIMIT :Types.WORD_ INDEX) return Types.WORD_INDEX;

-108-

Distributed Issues Final Report

function Get RandoMnNu~n (LIMIT Types.METERS) return Types.METERS;

function GetRandom Num (LIMIT Types.LONG_FIXED) return Types.LONGFIXED;

end Math;

-109-

Distributed Issues Final Report

--% UNIT: Math Package Body. I
--X Effects: Compute various functions: Tan, Arc Tan, and Sqrt. --

--X Modifies: No global data is modified. --

-- % Requires: No initialization is required. --

-- Raises: No explicitly raised exceptions are propagated. --

--X Engineer: L. Griest.

" - PACKAGE BODY : Math

" - The math package contains the various math routines needed by the BOS.

Some of these routines contain simplifications to increase performance.

The routines (provided to do fixed point math) are all functions which allow I
' for overloading. Since machine code statements can only be procedures, a

"'I call to the appropriate procedure is contained within each function. Since

"'I each function and procedure is intined, the end result should not generate

"'I any overhead.

-- Modifications Log

-- 88-10-10 : TEG => Original created.

-- 89-08-24 MPS => Bodies of fixed point functions created.

-- 89-11-08 : MPS => Arcsin and Power functions added.

89-11-09 : LJG => Arctan function was given greater accuracy.

-- 89-11-20 : MPS => GetRandomNum function created.

with Machine-Dependent;

with Time-Stamp;

pragma ELABORATE(TimeStamp, MachineDependent);

package body Math is

use Types;

type FUNC_NAME is (SINE, COSINE);

subtype FUNCRANGE is Types.WORD range 0..100;

type FUNC_TABLE is array (FUNC RANGE,FUNCNAME) of Types.LONGFIXED;

TRIGFUNC : FUNCTABLE ((0.000000,1.000000),(0.015625,1.000000),

(0.031250,1.000000),(0.046875, 1.000000)1

(0.062500,1.000000),(0.078125, 1.000000),

(0.093750,1.000000),(0.109375, 1.000000),

(0.125000,1.000000),(0.140625,1 .000000),

(0.156250,1.000000),(0.171875, 1.000000),

(0.187500,0.984375),(0.203125 ,0.984375)

(0.218750,0.984375),(0.234375,0.984375),

(0.250000,0.968750),(0.265625,0.968750),

(0.281250,0.968750),(0.296875,0.968750),

(0.312500,0.953125), (0.328125,0.953125),

-110- I

Distributed Issues Final Report

(0.343750,0.953125), (0.359375 ,0.937500),

(0.375000,0.937500),(0.390625,0.937500),

(0.406250,0.921875),(0.421875,0.921875),
(0.437500,0.906250), (0.453125,0.906250),
(0.453125,0.890625), (0.468750,0.890625),

(0.484375,0.875000) ,(0.500000,0.875000),
(0.515625,0.859375),(0.531250,0.859375),

(0.546875,0.843750),(0.546875,0.843750),

(0.562500,0.828125), (0.578125,0.828125),

(0.593750,0.812500),(0.609375,0.796875),

(0.625000,0.796875) ,(0.625000, 0.781250)

(0.640625,0.765625), (0.656250,0.765625),

(0.671875,0.750000), (0.671875,0.734375),

(0.687500,0.718750) ,(0.703125, 0.718750)

(0.703125,0.703125) ,(0.718750,0.703125),

(0.734375 ,0.687500) ,(0.750000,0.687500)

(0.750000,0.671875), (0.765625,0.656250),

(0.765625,0.640625), (0.781250,0.625000),

(0.796875,0.609375),(0.796875,0.593750),

(0.812500 ,0.593750) ,(0.812500 ,0.578125)

(0.828125,0.562500), (0.828125,0.546875),

(0.843750,0.531250), (0.843750,0.515625),

(0.859375,0.515625), (0.859375,0.500000),

(0.875000,0.484375) ,(0.875000,0.468750),

(0.890625,0.453125), (0.890625,0.437500),

(0.890625,0.437500), (0.906250,0.421875),

(0.921875,0.406250), (0.937500,0.390625),

(0.937500,0.375000), (0.937500,0.359375),
(0.937500,0.343750),(0.953125,0.343750),

(0.953125,0.312500),(0.953125,0.296875),

(0.953125 ,0.296875) ,(0.953125 ,0.281250),
(0.968750 ,0.250000) ,(0.984375 ,0.250000)

(0.984375,0.234375) ,(0.984375 ,0.218750),

(0.984375 ,0.203125) ,(0.984375, 0.187500)

(0.984375,0.171875),(1 .000000,0.156250),

(1 .000000,0.140625),(1.000000,0.125000),

(1 .000000,0.109375),(1.000000,0.093750),

(1.000000,0.078125),(1 .000000,0.062500),

(1.000000,0.031250),(1.000000,0.015625),

(1.000000,0.000000));

TANTABLE array(Types.WORD range 0..90) of Types.LONGFIXED

0.00000, 0.01746, 0.03492, 0.05241, 0.06993, 0.08749, 0.10510, 0.12278,

0.14054, 0.15838, 0.17633, 0.19438, 0.21256, 0.23087, 0.24933, r..26795,

0.28675, 0.30573, 0.32492, 0.34433, 0.36397, 0.38386, 0.40403, 0.42447,

0.44523, 0.46631, 0.48773, 0.50953, 0.53171, 0.55431, 0.57735, 0.60086,

0.62487, 0.64941, 0.67451, 0.70021, O32654, 0.75356, 0.78129, 0.80978,

0.83910, 0.86929, 0.90040, 0.93252, 0.96569, 1.00000, 1.03553, 1.07237,

1.11061, 1.15037, 1.19175, 1.23490, 1.27994, 1.32704, 1.37638, 1.42815,

1.48256, 1.53986, 1.60033, 1.66428, 1.73205, 1.80405, 1.88073, 1.96261,

-111-

Distributed Issues Final Report

2.05030, 2.14451, 2.24604, 2.35585, 2.47509, 2.60509, 2.74748, 2.90421,
3.07768, 3.27085, 3.48741, 3.73205, 4.01078, 4.33148, 4.70463, 5.14455,I
5.67128, 6.31375, 7.11536, 8.14434, 9.51436, 11.43005, 14.30067, 19.08114,

28.63625, 57.28996, Types.sqrtLarge nuitber);

function 11*1(LEFT,RIGHT :Types.LONGFIXED) return Types.LONG_FIXED is

RESULT Types.LONGFIXED;

MULTIPLICAND_1 Types.LONG FIXED LEFT;

MULTIPLICAND_2 Types.LONG_FIXED RIGHT;I
begin

MachineoDepenodent.LongLongMut(MULTIPLICAND_1,MULTIPL ICAND_2,RESULT);

return RESULT;I
end *1;

function "1/'(LEFT,RIGHT : ypes.LONGFIXED) return Types.LONGFIXED is

QUOTIENT Types.LONG_FIXED;

DIVIDEND Types.LONG_FIXED LEFT;

DIVISOR Types.LONG_FIXED RIGHT;

beginI
Machine Dependent .LongLong 0 iv(DIVIDEND ,DIVISOR ,QUOT lENT);

return QUOTIENT;

end 41I1;I

function "(LEFT Types.LONGFIXED;

RIGHT Types.WORD) return Types.LONG_FIXED is

QUOTIENT Types.LONGFIXED;I

DIVIDEND Types.LONG_FIXED LEFT;

DIVISOR Types.WORD RIGHT;
beginI

Machine Dependent.LongWordDiv(DIVIDEND,DIVISOR,QUOTIENT);

return QUOTIENT;

end #9/6;

function 11*h(LEFT,RIGHT :Types.METERS) return Types.METERS is

RESULT Types.METERS;

MULTIPLICAND_1 Types.METERS LEFT;I
MULTIPLICAND_2 Types.METERS RIGHT;

begin

Machine Dependent.MetersMetersMut(MULTIPLICAND_1,MULTIPLICAND_2,RESULT);I
return RESULT;

end 6*0

function 11/'(LEFT,RIGHT :Types.METERS) return Types-METERS isI

QUOTIENT Types.METERS;

DIVIDEND Types.METERS LEFT;

DIVISOR Types.METERS RIGHT;I
begin

Machine Deperndent .Meters Meters Div(DIVIDEND ,DIVISOR ,QUOT lENT);

return QUOTIENT;I
end so/SI;

-112-

Distributed Issues Final Report

function '/'(LEFT : Types.METERS;

RIGHT :Types.WORD) return Types.METERS is

QUOTIENT :Types.METERS;

DIVIDEND :TypesMETERS LEFT;

DIVISOR :Types.WORD RIGHT;

begin

MachineDependent.MetersWordDiv(DIVIDEND ,DIVISOR,QUOTIENT);

return QUOTIENT;

end 10/4;

function '"-l(LEFT,RIGHT: Types.RATETYPE) return Types.RATE TYPE is
RESULT Types.RATETYPE;

MULTIPLICAND 1 Types.RATE TYPE LEFT;

MULTIPLICAND_2 Types.RATE TYPE RIGHT;

begin

Machine Dependent.Rate_RateMut(MULTIPLICAND_1, MULTIPLICAND_2,RESULT);

return RESULT;

end 6*1

function 1"/"(LEFT,RIGHT :Types.RATE_TYPE) return Types.RATE TYPE is

QUOTIENT Types.RATETYPE;

DIVIDEND Typs.RATETYPE =LEFT;

DIVISOR Types.RATETYPE RIGHT;

begin

Machine Dependent.Rate_RateDiv(DIVIDEND,DIVISOR,QUOTIENT);

return QUOTIENT;

end 11/11;

function "("(LEFT :Types.RATE TYPE;

RIGHT :Types.WORD) return Types.RATETYPE is

QUOTIENT Types.RATETYPE;

DIVIDEND Types.RATE_TYPE LEFT;

DIVISOR Types.WORD RIGHT;

begin

Machine Dependent.Rate_WordDiv(DIVIDEND,DIVISOR,OUOTIENT);

return QUOTIENT;

end 41/0;

function "("(LEFT Types.LONG_FIXED;

RIGHT Types.RATE TYPE) return Types.LONG FIXED is

QUOTIENT Types.LONGFIXED;

DIVIDEND Types.LONGFIXED LEFT;

DIVISOR Types.RATETYPE RIGHT;

begin

Mach ine Dependent.LongRate D iv(DIVIDEND ,DIVISORQUOT lENT);

return QUOTIENT;

end DIP6;

function "/"(LEFT Types.RATETYPE;

RIGHT Types.LONG FIXED) return Types.RATE TYPE is

QUOTIENT :Types.RATETYPE;

-113-

I
Distributed Issues Final Report

DIVIDEND Types.RATE_TYPE := LEFT;

DIVISOR Types.LONG_FIXED := RIGHT; I
begin

Machine Dependent.RateLong_Div(DIVIDEND,DIVISOR,QUOTIENT);

return QUOTIENT;

end SI/SI;

function ""(LEFT : Types.RATETYPE;

RIGHT : Types.LONG FIXED) return Types.LONG FIXED is

RESULT : TypesLONGFIXED;

MULTIPLICAND_1 : Types.RATETYPE LEFT;

MULTIPLICAND_2 : Types.LONG FIXED RIGHT; I
begin

MachineDependent.Rate_Long_LongMuL(MULTIPLICAND 1,MULTIPLICAND_2,RESULT);

return RESULT;

, 5,nd 6*1;1

function "*"(LEFT : Types.RATE_TYPE;

RIGHT : Types.LONGFIXED) return Types.RATE TYPE is

RESULT Types.RATETYPE;

MULTIPLICAND_ 1 Types.RATETYPE LEFT;

MULTIPLICAND_2 Types.LONGFIXED RIGHT; I
begin

MachineDependent.Rate_Long_RateMut(MULTIPLICAND_1,MULTIPLICAND_2,RESULT);

return RESULT;

end "aI

function Power(BASE, RAISEDTO : Types.LONGFIXED) return Types.LONG_FIXED is

RESULT : Types.LONG_FIXED := 1.0; F
OLD-RESULT : Types.LONG_FIXED;

begin

for I in 1..Types.WORD(RAISEDTO) loop I
OLD-RESULT := RESULT;l

RESULT := RESULT * BASE;

if RESULT = OLDRESULT then -- if no change, don't waste time

exit;

end if;

end Loop;

return RESULT;

end Power;

function Sin (ANGLE : Types.BAM) return Types.LONGFIXED is

SUBPROGRAM BODY : Math.Sin

- - Sin is a function which takes an angle in Binary Angle
Measurements and uses a table Lookup to find the corresponding result.

-- It returns the sin of the ANGLE in the Types.LONGFIXED type.

-114- 1

Distributed Issues Final Report

NEGAT Types.WORD 1;

ANGLE2 Types.WORD Types.WORD(ANGLE);

TEMP Types.LONGFIXED;

begin

if ANGLE2 0 then

ANGLE2 abs(ANGLE2);

NEGAT - 1;

end if;

if ANGLE2 > 16384 then

TEMP := TRIGFUNC(Types.ORD((32767 - ANGLE2)/163),SINE);

return TEMP * Types.LONGFIXED(NEGAT);

else

TEMP := TRIGFUNC(Types.WORD(ANGLE2/163),SINE);

return TEMP * Types.LONGFIXED(NEGAT);

end if;

end Sin;

function Cos (ANGLE Types.FAM) return Types.LONG_FIXED is

-- SUBPRCGRAN BODY Math.Cos

-- Cos is a function which takes an angle in Binary Angie

Measurements and uses a table tookup to find the corresponding result.

-- The result is returned in the Types.LONG FIXED type.

ANGLE2 : Types.WORD := Types.WORD(ANGLE);

begin

ANGLE2 := abs(ANGLE2);

if ANGLE2 > 16384 then

return (-1) * TRIG UNC(Types.WORD((32767-ANGLE2)/163),COSINE);

else

return TRIG FUNC(Types.WORD(Angte2/163),COSINE);

end if;

end Cos;

function Tan (ANGLE : Types.BAM) return Types.LONG_FIXED is

-- SUBPROGRAM BODY : Math.Tan

- - Tan is the tangent function which takes an angle in Binary Angie

Measurements and uses a table lookup to find the corresponding result.

TANGENT Types.LONG FIXED;

THETA Types.WORD;

-115-

I
Distributed Issues Final Report

begin
TimeStamp.Log(O048); --STP(0048) Math.Tan start
THETA := Types.WORD(ANGLE/182); -- approx. 182 bams per degree

if THETA >= -90 and THETA <= 90 then

if THETA >= 0 then

TANGENT TANTABLE(THETA);

else

TANGENT -TANTABLE(-THETA);

end if;

elsif THETA < -90 then

TANGENT TANTABLE(THETA + 180);

else

TANGENT -TANTABLE(180-THETA);

end if;

Time_Stamp.Log(O049); --STP(0049) Math.Tan end I
return TANGENT;I

end Tan; I
function Sqrt(X : in Types.METERS) return Types.METERS is

--I I
-- SUBPROGRAM BODY : Math.Sqrt

Sqrt returns the square root of a number. This routine wiLL exit when

the approximation of the square is ctose to the previous result. This
-- prevents unneeded Looping for accuracy.

use Types; -- import operators

F Types.METERS X;

Y Types.METERS 1.0;

OLD_Y : Types.METERS := Y;

begin

TimeStamp.Log(O050); --$TP(0050) Math.Sqrt start (METERS)

if X = 0.0 then

return F;

end if;

for I in 1..15 loop

exit when Y = 0.0;

Y := (Y + F/Y) / Types.WORD(2);

if Y = OLDY then

exit; I
end if;
OLOY := Y;I

end Loop;

TimeStamn.Log(O051); --STP(0051) Math.Sqrt end (METERS)

return Y;

Pnd Sqrt;

function Sqrt(X : in Types.LONGFIXED) return Types.LONGFIXED is

-116- I

Distributed Issues Final Report

use Types; - - import operators

F Types.LONGFIXED X;

Y Types.LONGFIXED 1.0;

OLD_V Types.LONGFIXED:=Y

beg in

TimeStam.Log(OO52); --STP(O052) Math.Sqrt start (LONGFIXED)

if X = 0.0 then

return F;

end if;

for I in 1..15 loop

exit when V 0.0;

Y : (V + F/V) / Types.WORD(2);

if Y = OLD V then

exit;

end if;

OLD_Y =Y

end Loop;

TimeStamp.Log(0053); - -STP(0053) Math.Sqrt end (LONGFIXED)

return Y;

exception

when NUMERIC-ERROR => Y: OLDY;

return Y;

end Sqrt;

-- for RATE TYPE

function Sqrt(X in Types.RATETYPE) return Types.RATE TYPE is

use Types; -- import operators
F Types.RATETYPE X;

Y Types.RATE TYPE 1.0;

OLD_V Typs.RATE-TYPE :=Y;

beg in

Time_Stanp.Log(O116); --STP(0116) Math.Sqrt start (RATETYPE)

if X =0.0 then

return F;

end if;

for I in 1..15 loop

exit when V = 0.0;

YV: (V + F/V) / Types.WORD(2);

if V = OLD V then

exit;

end if;

OLD_V : V;

end loop;

Time_Stanp.Log(O117); --STP(0117) Math.Sqrt end (RATETYPE)

return Y;

exception

when NUMERICERROR => V: OLDY;

return Y;

end Sqrt;

-117-

Distributed Issues Final Report

-- SUBPROGRAM BODY : Math.Arcsin

-- Arcsin uses an appoximation method of series expansion in order to achieve

it's results. Simple constants are named to improve readability. The

-- constants are not fully divided out beforehand to increase accuracy, but

to improve speed, the constants could be divided beforehand and constants

-- used to muLtipty the TERMs.

function Arcsin(THETA : Types.LONGFIXED) return Types.LONG_FIXED is

radtodeg : constant Types.LONGFIXED 57.296875; -- 180 / pi

three : constant Types.LONGFIXED := 3.0;

six : constant Types.LONGFIXED : 6.0;

five : constant Types.LONGFIXED : 5.0;

seven : constant Types.LONGFIXED 7.0;

fifteen : constant Types.LONGFIXED := 15.0;

forty : constant Types.LONGFIXED := 40.0;

three thirtysix : constant Types.LONGFIXED 336.0;

TERM1 Types.LONG_FIXED;

TERH2 Types.LONG_FIXED;

TERM3 Types.LONGFIXED;

TERP4 : Types.LONGFIXED;

RESULT : Types.LONGFIXED;

begin

TERMI := THETA;

TERM2 := Power(THETA,three);

TERM2 TERM2 / six;

TERM3 three * Power(THETA,five);

TERM3 TERM3 / forty;

TERM4: fifteen * Power(THETA,seven);

TERM4 TERM4 / threethirty six;

RESULT (TERMI + TERM2 + TERM3 + TERM4) * rad-todeg;

return RESULT;

end Arcsin;

function Arctan(ZINPUT : Types.LONGFIXED) return Types.BAM is

"' SUBPROGRAM BODY : Math.Arctan IlI
A function used to return an approximation of the arctangent function.

- Using the Taylor series expansion:

arctan z = z - (z**3/3) + (z**5/5) - (z**7/7) + .. (Izl<= 1 and z**2 /= -1)

"' carried out for two terms (initially).

Z_CUBED Types.LONGFIXED;

-118-

Distributed Issues Final Report

QUOTIENT Types.LONG_FIXED;

ARCTANZ Types.LONG_FIXED;

CONVFACTOR constant Types.LONGFIXED :=10430.38; - -Radians to BAMS

TEMP Types.LONG_FIXED;

ARCTANZ-BAMS Types.BAM;

begin

ZCUBED Z_INPUT * Z INPUT; --actuatly z**2

ZCUBED Z CUBED *Z INPUT; -- z**3

QUOTIENT Z_CUBED /Types.WORD(3);

ARCTAN_Z Z_INPUT -QUOTIENT;

TEMP :=ARCTANZ * CONV FACTOR;

ARCTAN-Z-BANS :=Types.BAN(TENP);

return ARCTANZBANS;

end Arctan;

function GetRarnN.mt(LINIT :Types.METERS) return Types.NETERS is

*-SUBPROGRAM BODY :Math. GetRandomNun

This function returns a psuedo random number to the catter. it has

three forms returning three different types for the convenience of

-1Simulate.Sensor. The random number is received from the channei two

-- counter. Therefore the number returned from the

Machine Deperident.Next Ranidom caLL is between 0 and Machine-Dependent

-. max timer vaLue. This number is then rejitiptied by the parameter
LIMIT, and, returned in the type of LIMIT, is a random number from

-- 0 to LIMIT.

VALUE Types.RATETYPE;

TEMP rypes.WORDINDEX;

begin

Machine Dependent.Next_Randor(TEMP);

VALUE Types.RATETYPE(TEMP) / Types.WORD(

MachineDependent.max_timer_vatue);

VALUE VALUE * Types.RATE-TYPE(LIMIT);

return Types.METERS(VALUE);

end GetRandomNum;

function Get Random -Nun(LIMIT :Types.LONGFIXED) return Types.LONG_FIXED is

VALUE Types.RATETYPE;

TEMP Types.WORDINDEX;

begin

Mach ineDependent. Next_Random(TEMP);

VALUE Types.RATEYPE(TEMP) / Types.WORD(

MachineDependent.max_timer_vatue);

VALUE VALUE * LIMIT;

return Types.LONGFIXED(VALUE);

end Get Random Nun;

-119-

Distributed Issues Final Report

function Get RandoenNuii(LIMIT :Types.WORD -INDEX) return TypeS.WORD -INDEX is

VALUE Types.RATETYPE;

TEMP Types.WORDINDEX;

begi r

Mach i ne Dependent. Next_Rando(nTEMP);

VALUE Types.RATETYPE(TEMP) / Types.WORD(

MachineDependent .max-timer vatue);

VALUE VALUE * Types.RATE -TYPE(LIMIT);

return Types.WORDINDEX(VALUE);

end Get Random Nuvn;

end Math;

-120-

Distributed Issues Final Report

..

-- X UNIT: Mouse Package Spec.

--X Effects: Provides graphics pointing device interrupt handling. --

--X Modifies: Status Mode, and MouseBuffer X-Y positions are updated. --

--X Requires: Runtime initiatization of interrupt vector. --

--X Raises: Task will terminate on MOUSEERROR.

-- Engineer: M. Sperry.
..

". PACKAGE SPEC : Mouse
"-I

"'lj In addition to establishing communications with the mouse, a task is

"' provided which handles the receive interrupt generated by the mouse at

°. COM2. This task has the pragma INTERRUPTHANDLER and special restrictions

apply to it's communication facilities in order to guarantee a good response

time.

-- Modifications Log

88-09-30 : MPS => Original created.

with System;

package Mouse is

procedure InitiaLize;

task Char-In is

pragma INTERRUPTHANDLER;

entry REPORT;

for REPORT use at (16#83#,0); -- COM2 8250 serial port vector

end CharIn;

end Mouse;

-121-

1
Distributed Issues Final Report

--% UNIT: Mouse Package Body.

--% Effects: Provides graphics pointing device interrupt handling. --

-- % Modifies: Status Mode, and Mouse-Buffer X-Y positions are updated. --

-% Requires: Runtime initialization of interrupt vectrr. -

-- % Raises: Task wilt terminate on MOUSEERROR.

-- Engineer: M. Sperry.

" PACKAGE BODY : Mouse

"'I m
"-j The Mouse package implements the routines needed for control of a

". mouse. There is an initiaLization procedure which sets up the mouse

-- for 4800 baud, no parity, 7 data bits, and two stop bits. There is

"'I also an interrupt entry task which takes data from the mouse and

if a complete report is generated, gives that data to the Mouse-Buffer

-']"1 task.

-- Modifications Log

-- 88-09-30 MPS => Original created.

-- 89-08-08 MPS => Made all references to hardware in one package.

89-12-06 : TEG => Shut off mouse interrupts during init. Added support

- - for Restarting the system using RESET&1OE buttons.

with Types;

with 'owLeveL_10;

with Debug_10;

with Mouse-Buffer;

with Mouse-Data; provides constants and data structures

with Status;

with InterruptControl;

with Time-Stamp;

with HWConfig;

with Distrib;

use LowLevel_10;

use Mouse-Data; visibiLity to "and" function

pragme ELABORATE(LowLeve_ I, Debug_10, Mouse_Buffer, Status, TimeStap);

package body Mouse is

DATA : LowLevet_I.BYTE; -- char from mouse I
BUTTON-PUSHED : MouseData.BIT_FIELD; - array representing keys

STATUS-BYTE MouseData.BITFIELD; -- represents status errors

PREV_BUTTONPUSH MouseData.BITFIELD := (others => FALSE); --previous buttons I
MOUSEINPUT : MouseData.RAWMOUSEWORD := (0,0,0);-- transform to 12-bit

1
-122- I

Distributed Issues Final Report

MOUSE_REPORT Mouse Data.SIGNEDMOUSE_WORD; -- transformation to signed

REPORT_COUNT : Types.WORD range 0..5 := 0; -- counts byte in report

CHANGEREQUESTED : BOOLEAN := FALSE; -- rendezvous with status?

MOUSEERROR : EXCEPTION;

TEMP X : Types.WORD; -- local copy of X motion

TEMPY : Types.WORD; -- local copy of Y motion

procedure Initialize is

SUBPROGRAM BODY : Mouse.Initialize

Initialize sets up the mouse at 4800 baud, no parity, 7 data bits, and

two stop bits. The number of stop bits is insignificant. There should

" only be two formats that the mouse can be in, either relative bit pad one

or Micrsoft Mouse. The default on power up for the mouse is MM at 4800.

"-I The mouse must be commanded in the following order: BAUD (which is set to

default to 4800 so it is not necessary to reprogram it), # of reports/sec.,

and then format of the reports. The mouse used is a Logitech Serial Mouse

as described in hwconfig.as. The mouse is programmed with Relative Bit

Pad One format which has five bytes of data associated with it.

INTERRUPTS : LowLevel tO.BYTE; - for input of 8259 ints

RESPONSE : Low LevelIO.BYTE; -- for mouse responses

TIME-OUT : INTEGER := 30000; time out for mouse response

begin

-- Disable receive interrupts

SendControt(HWConfig.COM2 int enable,Mouse_Oata.specific_int disable);

Receive Controt(HWConfig.COM2_status,RESPONSE); -- clean out junk in status

ReceiveControt(HW Config.COM2_dataRESPONSE); clean out junk in data

SendControt(HWConfig.COM2_control,Mouse_Oata.access baud);

SendControt(HWConfig.COM2_data,MouseData.hostbaud); -- set BAUD = 4800

-- set CON2 serial parameters

SendControt(HWConfig.COM2_control,MouseData.host format);

Send_Control(HW_Config.COM2_data,MouseOata.acknowtedge); -- wakeup mouse

loop

ReceiveContro (WConfig.COM2status,RESPONSE); -- wait for response

if RESPONSE = Mouse Data.data new then

ReceiveControt(HWConfig.COM2_data,RESPONSE); -- clear out byte

exit;

else

TIME OUT := TIME-OUT - 1;

end if;

if TIME OUT = 0 then

exit;

end if;

end loop;

if TIMEOUT a 0 then

DebugIO.PutLine("Unable to establish communications with mouse.");

-123-

Distributed Issues Final Report

end if;

SendContro,(4WConfig.COM2_data,MouseData.mouse char speel);

delay 0.01; -- stow for mouse input buffer

SendControl(HW_Config.COM2_dataMouseOata.ouse format);

SendControt(HW_Config.COM2_modemcontro,Mouse_Data.genera _int _enable);

Send Controt(HWConfig.COM2 int enableMouseData.specific intenable);

ReceiveControt(HWConfig.pic_8259_mr, INTERRUPTS);
-- enable COM2 in PIC in Line below

INTERRUPTS := Mouse_Oata.Bits toByte

(MouseData.Byte_toBits(INTERRUPTS) and Mouse_Oata.pic and mask);

Send_Control(HW_Config.pic_8259_mrINTERRUPTS);

end Initialize;

task body Char-In is

-- TASK BOOY : Mouse.Char_In -I [I
" One of the main tasks used to move the reticle around the battlefield

-- screen. The task rendezvous with the graphics task reporting positions

every 28 milliseconds, unless the middle button is pressed (MODE) changing I
-. the mode to AUTOMATIC. In this event, the mouse simply waits for a change

-- to MANUAL, since automatic mode is controlled by the rocket task. The mouse

task will not rendezvous with the graphics task until set to MANUAL. When

in MANUAL mode, the task (upon completion of one report) will rendezvous

with the graphics task at high priority to report it's position. It will

then change the status task's shared variables if any need to be changed.

If one does, and the status task has completed it's previous work and gone I
-- to an accept state, then the mouse task wakes it up. Because the mouse

is programmed with Relative Bit Pad One format and needs five bytes of data

in order to complete its report, after the first byte has come in, it is I
only 2 milliseconds until the next byte comes in until five bytes have been

received. Then there is a gap of 18 milliseconds until the next byte wilt

be seen (assuming constant motion of the mouse). This is why there is

"I ,ery little processing of data until the fifth byte. It is entirely possible

- because the mouse is an asychronous device that up to three reports may be

"l generated and handled in one interval. This worst case must be accounted

for in timing considerations.
-II

use Status; -- for visibility to "="

use Types; -- for visibility to "+"

begin

Loop

accept Report do

--STP(0056) Mouse task start

ReceiveControl(HWConfig.COM2_status,DATA); -- receive status

STATUS-BYTE :z Mouse_Data.Byte to Bits(DATA);--check statusbyte for errors

if STATUSBYTE(MouseData.overflow) or 1

-124- I

Distributed Issues Final Report

STATUS BYTE(Mouse Data.franiing) then

REPORTCOUNT :=0; -- start a new report

ReceiveControl(HW-Config.cOM42data,DATA); -- clear out data port

else

Receive ControL(14WConfig.COM2_data,DATA); -- get valid data

if DATA > Mouse-Data.sync byte then -. check for new report

REPORT_COUNT := 1; start of new report

end if;

end if;

case REPORT-COUNT is -- convert data to mouse X,Y

when 1 =>- or buttons.

BUTTON-PUSHED Mouse Data.Byte_to_Bits(DATA);

REPORT COUNT REPORTCOUNT + 1;

when 2 =>

MOUSEINPUT.LOW :=MouseData.Byte_to_Bit6(DATA);

REPORT COUNT :=REPORTCOUNT + 1;
when 3 =>

MOUSEINPUT.HIGH :=MouseoData.Bytetroit6(DATA);

MOUSE REPORT :=MouseData.Raw_toSigned(MOUJSE INPUT);
TEMPX :=MOUSE REPORT.LOW12;

REPORT COUNT :=REPORT_COUNT + 1;
when 4 =>

MOUSE INPUT.LOW :=Mouse-Data.Bytetoit6(DATA);

REPORT COUNT :=REPORT-COUNT + 1;

when 5 =>

-don't move mouse if any buttons pushed.
if (not BUTTON PUSHED(MouseData.reset)) and -- guarantee only one-

(not BUTTON PUSHED(Mouseata.mode)) and-- rendezvous per report

(not BUTTONPUSHED(MouseData.launch)) then -- (RTE bug)
PREV_BUTTON_PUSH(MouseoData.reset) FALSE;

PREVSUTTONPUSH(MouseData.mode) FALSE;

PREV BUTTON PUSH(MouseData.Launch) FALSE;

MOUSE INPUT.HIGH :=Mouse-Data.Byte_to_Bit6(DATA);

MOUSE REPORT :=Mouse-Data.Raw_to_Signed(MOUJSE_ INPUT);

TEMPY := MOUSE REPORT.LOW12;

if Status.MODE z Status.MANUAL then

MOUSE BUFFER.MOUSEX TEMPX;

MOUSE BUFFER.MOUSEV TEMPY;

--STP(0057) Mouse rendezvous with Save start

select -- miust be conditional to work in INTERRUPT-HANDLER

Mouse Buffer.Save.ReticLeMotion;

--STP(0058) Mouse rendezvous with Save end

else
null;

end select;

end if;

else

-- A BUTTON IS DEPRESSED. FIRST LOOK AT "RESET" BUTTON

if BUTTONPUSHED(MouseData.reset) and

-125-

Distributed Issues Final Report

not PREVBUTTON PUSH(MouseData.reset) then

for I in Status.RESETSTATUSTYPE LoopI
Status.STATUSCONTROL(I).DATA :=0;

Status.STATUSCONTROL(I).DISPLAYED :=FALSE;

end loop;

Status.REQ COUNT Status. REG COUNT + 1;
CHANGE-REQUESTED TRUE;

PREVBUTTONPUSH(Mouse-Data.reset) TRUE;
elseI
PREVBUTTONPUSH(MouseData.reset) FALSE;

end if;

NOW LOOK AT MODE BUTTON ...

When the MODE button is pushed, check to see if the RESET button is

currently active. If so, then do a system reset!

if BUTTONPUSHED(MouseData.mode) then

if BUTTONPUSHED(Mouse-Data.reset) then
Distrib.Restart; - perform system shutdownI

eLsif not PREVBUTTONPUSH(MouseData-mode) then

if Status.MODE =StatuS.MANUAL then - - Change mode

Status.MODE Status.AUTOMATIC;

else
Status.MODE Status.MANUAL;

end if;

Status.MODE DISPLAYED :=FALSE;I
Status.REOCOUNT Status.REQ_COUNT + 1;

CHANGEREQUESTED TRUE;

PREV BUTTONPUSH(MouseData.mode) :=TRUE;

end if;

else

PREVBUTTONPUSH(MouseOata.mode) :=FALSE;

end if;

-- FINALLY, LOOK AT LAUNCH BUTTON

if BUTTONPUSHED(Mouse-Data.Launch) and

not PREy BUTTON PUSH(MouseOata.Launch) then

if Status.MOOE = Status.MANUAL then

Mouse Buffer.LAUNCH :=TRUE;

Mouse Buffer.NEWABSX Mouse_Buffer.OLD_ABSX;

MouseBuffer.NEWABSY MouseBuffer.OLD_ABS_Y;

end if;

PREV BUTTON PUSH(MouseData.Launch) :=TRUE;

else

if not BUTTONPUSHED(MouseData.Launch) then

PREV BUTTON PUSH(MouseData.Launch) :=FALSE;

end if;

end if;

if CHANGE REQUESTED and then Status.REQ-COUNT 1 then

--STP(0059) Mouse rendezvous with Status start

-126-

Distributed Issues Final Report

select
Status.Update.Signal;

--STP(0060) Mouse rendezvous with Status end

else

null;

end select;

end if;
end if;

CHANGE REQUESTED := FALSE;

REPORTCOUNT := 0;

when others => null;

end case;
Send Control(HWConfig.pic_8259, MouseData.speceoi); -- specific Eol

--STP(0061) Mouse task end

end Report;

end loop;

end Char_In;

end Mouse;

-127-

I
Distributed Issues Final Report

-- % UNIT: Mouse Buffer Package Spec. -

--X Effects: Buffers mouse data input, translates it to pixel system. --

-- % Modifies: No global data is modified (other than in own spec).

-- % Requires: No initialization is required. --

-- % Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: M. Sperry.

- PACKAGE SPEC : Mouse_Buffer

--I I
-- Package MouseBuffer contains a task called Save which is responsible

for saving reports of mouse movement via a rendezvous with an interrupt

task. The task then rendezvous with the display task to relocate the

reticle. The shared variables of the X and Y positions as well as the

-- iaunch flag are contained here. The mode flag is contained in the

-- status package specification.

-°Modifications Log

-- 88-10-24 : MPS => Original created.

with Types; 1
with Config;

package MouseBuffer is

stack-size : constant := 118; -- in bytes

MOUSEX Types.WORD; - for use with the Save task in MouseBuffer

MOUSE_ : Types.WORD; -- for use with the Save task in MouseBuffer

LAUNCH : BOOLEAN := FALSE;

OLD ABSX : Types.WORD; -- absolute X position of Reticle on Screen

OLD ABSY : Types.WORD; - " Y

NEWABSX : Types.WORD; -- for use by ENGAGE (latched values by Mouse pkg) I
NEW ABS Y : Types.WORD;

task type Save-Type is

entry ReticleMotion;

pragma PRIORITY(Config.savepriority);

end SaveType;

for SaveType'STORAGESIZE use INTEGER(Config.bytes_per_storage_unit *

stack-size);

Save : SaveType; -- for saving motion of mouse to display

end Mouse-Buffer;

1
-128-

I

Distributed Issues Final Report

-- % UNIT: MouseBuffer Package Body. --

--X Effects: Buffers mouse data input, translates it to pixel system. --

--X Modifies: No global data is modified (other than in own spec). --

--X Requires: No initialization is required. --

--% Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: M. Sperry.

--..

-- PACKAGE BODY : MouseBuffer

-- Package body MouseBuffer is responsible for the implementation of the

-- buffering between the mouse interrupt routine and the screen. Note that

-- checks are performed to be sure that the reticle is within the screen

defined by Config. Also, note that the Y coordinate is reversed because

-- the screen on the EGA runs (in the Y direction) from 0 to 349 starting

from the upper Left and moving down, i.e., the mouse has Y direction as

-- positive moving up, and the EGA has Y positive moving down.

-- Modifications Log

88-10-24 : MPS => Original created.

with Shapes;

with Graphics;

with Config;

with Debug_10;

with InterruptControL;

with TimeStam;

pragma ELABORATE(Debug_10, Graphics, InterruptControL, Time_Stamp);

package body Mouse-Buffer is

use Types; -- neeued for visibility to '+'

task body SaveType is

List ten : constant := 1;

LeftLimit : constant := Config.batttefietd screenLeft;

rightLimit : constant := Config.batttefietd_screenright;

topLimit : constant := Config.batttefieLd_screen top;

bottomLimit : constant :: Config.batttefietd screen bottom;

PRIORITY : Grapnics.PRIORITY TYPE := Graphics.HIGH;

WORKLIST : Graphics.MOVELISTTYPE(tistten .. List ten);-- 1 item (reticle)

TEMPX : Types.WORD;

-129-

Distributed Issues Final Report

TEMP_Y Types.WORD;

begin

-Initial display of reticle

WORK-LIST(List Len).XYOLD (Config.batt~efield-center-x, Config.batttefietd center y);

WORK LIST(List_ Len).XYNEW (Config.batttefiedcenterx, Config.battlefietd center y);

WORK LIST(List_ Len).OBJECT Shapes.RETICLE;I

WORK LIST(list_ Len).COLOR Graphics.reticte_coLor;

GrapIhics.Display.Move(PRIORITY, WORK_LIST);

Loop

begin -- exception block

Time Stamp.Log(0062); --STP(0062) mouse Buffer task and accept

accept Reticte Motion;

-Get new positions of reticte (mouse)I

InterruptCont rol .Disabte;

TEMPX WORKLIST(List_ Len).XYOLD.X + MOUSE_X I
TEMP V WORKLIST(tist_ ten).XYOLD.Y - MOUJSEY;

InterruptCont rol .Enabte;

-- Check bounds of reticle; don't Let it go past edge of batrtefied screen.I

if (TEMP-X + Shapes.RETICLE LEFT) < Left_-Limit then

TEMPX :=left-Limit - Shapes.RETICLE_LEFT I
eLsif (TEMP-X + Shapes.RETICLE RIGHT) > right_ Limit then

TEMP-X :=rightLimit -Shapes.RETICLE _RIGHT;

end if;

if (TEMP-V + Shapes.RETICLETOP) < top Limit thenI

TEMPV : topLimit - shapes.reticLe top;

eisif (TEMPV + Shapes.RETICLEBOTTOM4) > bottom_ hmit then

TEMPV : bottom_ Limit - Shapes.RETICLE_BOTTI4;I

end if;

WORKLIST(List_ Len).XYNEW.X TEMPX;

WORKLIST(List_ Len).XY_NEW.Y TEMPY;

-update global accessabLe valuesI

InterruptControL .DisabLe;

OLDABSX TEMPX;

OLDABSV TEMPY;

InterruptControL .Enabte;

iime-Stanp.Log(OO63); --STP(0063) Mouse-Buffer rendezvous with Graphics start

Graphics.DispLay.Move(PRIORIT

, WORK _LIST); 1 0

Distributed Issues Final Report

TimeStanrp.Log(O064); -- $TP(0O64) Mouse-Buffer rendezvous with Graphics end

WORK_LIST(listLen).XYOLD := WORK LIST(tistten).XY NEW;

exception

when others =>

DebugIO.PutLine("Error in Save");

end; -- exception block

TimeStamp.Log(O065); --STP(0065) MouseBuffer task end

end loop;

end SaveType;

end Mouse-Buffer;

-131-

Distributed Issues Final Report

..

--X UNIT: MouseData Specification. -

--X Effects: Provides relevant data structures and constants. -

-X Modifies: Nothing.

--X Requires: Nothing. I
-%Raises: Nothing. -

-- % Engineer: M. Sperry.

" PACKAGE SPEC : Mouse Data

" - jPackage Mouse-Data provides the data structures and constants necessary

to intiaLize and run a Logitech C7 serial mouse at 4800 baud, no parity, 7

data bits, and two stop bits. The Logitech mouse is capable of 8 different

-- formats. Relative Bit Pad One is chosen here because it allows twelve

bits of motion data for each repo t. Although this creates more work in

-- the processing of each byte of data (there are five bytes of data in each

-- report) there is more accuracy in the pointing device.

The mouse controls the movement of the reticle (defined in the Graphics

package) by receiving a report, generating the motion in X and Y

coordinates, and sending these values to package Mouse-Buffer for

processing (task Save).

- The reports come in 28 msecs apart with a 2 msec interval between each

"' byte of the report. A report consists of the following in Relative Bit Pad

-- One:
.-

-- P 6 5 4 3 2 1 0 = bit number

np 1 0 L M R 0 0 Byte 1 (minimLi value = 64)

--Inp 0 X5 X4 X3 X2 Xl XO Byte 2

-- np 0 X11 X10 X9 X8 X7 X6 Byte 3

-- np 0 Y5 Y4 Y3 Y2 Y1 YO Byte 4

np 0 Y11 Y1O Y9 Y8 Y7 Y6 Byte 5

\- no parity

L,M,R above stands for Left, Middle, and Right buttons; 1 = key pressed.

The mouse is located at COM2 on an AT which is base address 2F8 (hex).

-- Modifications Log

-- 89-04-15 : MPS => Original created.

-- 89-08-08 : MPS => Defined COM2 addresses in HWConfig.

with Types;

with LowLeve_10;

with Unchecked-Conversion;

with MWConfig;

use LowLevel_10;

-132- U

Distributed Issues Final Report

package MouseData is

spec eoi constant LowLevel_IO.BYTE 16#63#;--specific end int

syncbyte constant LowLevelIO.BYTE 63; -- used to sync reports

-- The following constants are bit masks to be used with the BITFIELD type.

reset constant 4; -- Left button (reset statistics)

mode constant 3; -- middle button (change mode)

Launch constant 2; -- right button (fire rocket)

-- These constants are declared to aid in detecting serial errors during

-- transmision.

overflow constant 1; -- position from status (2FD)

framing constant 2; -- position from status (2FD)

-- Because the data bits are received six bits at a time, the following record

-- representation clauses are used to convert two bytes of data (a Least and

most significant) to a single signed twelve bit number.

type BIT6 TYPE is range 0 63;

type GAP TYPE is range 0 15;

type RAWMOUSEWORD is

record

LOW BIT6_TYPE;

HIGH BIT6_TYPE;

GAP GAP-TYPE;

end record;

for RAWMOUSE WORD use

record

LOW at 0 range 0 5;

HIGH at 0 range 6 .. 11;

GAP at 0 range 12 15;

end record;

least tow12 : constant -2048;

type SIGNEDMOUSEWORD is

record

LOW12 Types.WORD range leastlow12 2047;

GAP Types.WORD range 0 .. 15;

end record;

for SIGNEDMOUSEWORD use

record

LOW12 at 0 range 0 11;

GAP at 0 range 12 15;

-133-

I
Distributed Issues Final Report

end record;

-- Most significant bit for the following type definition on TANDY 4000 : 15

type BIT_FIELD is array(O..15) of BOOLEAN; I
pragma pack(BITFIELD); =

for BITFIELD'size use 16;

function RawtoSigned is new UncheckedConversion(RAWMOUSEWORD, I
SIGNEDMOUSEWORD);

function Byte to Bit6 is new UncheckedConversion(LowLeveI10.BYTE,BIT6_TYPE);

function Bits_toByte is new UncheckedConversion(BITFIELDLow_LeveL_I0.BYTE); I
function Byte to Bits is new UncheckedConversion(Low Levelt0.BYTE,BIT_FIELD);

pic and mask : constant BITFIELD := I
(TRUE,TRUE,TRUE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,

TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE); -- will enable Level 03 (COM2)

-- The following constants are used in the initialization procedure of mouse. 1

They are used to access the serial port COM2 on a TANDY PC (386).

accessbaud : constant LowLevelIO.BYTE 16#80#;

-- access baud rate rgtrs.

host-baud : constant LowLevelI0.BYTE 16#18#;

-- 4800 baud (30h = 2400)

host format constant LowLevel_IO.BYTE =6#IE#;

-- 4800,e,7,1

acknowledge constant LowLevelIO.BYTE 16#20#;
-- mouse responds w/06h when
ack_response : constant LowLeveL-IO.BYTE = 16#06#;

-- sent a space (20h)

datanew : constant LowLevelIO.BYTE 16#61#;

-- char received

mouse format constant LowLeveLI0.BYTE 16#42#;

-- Relative Bit Pad One

mouse char speed : constant LowLevel- IO.BYTE 16#4C#;

-- 35 reports/sec when moving

generalint enable : constant Low_Level_0.BYTE 16#08#;

-- for modem control register I
specificint disable : constant Low_LevelI0.BYTE 16#00#;
-- disable receive interrupt

specificint enable : constant LowLevelIO.BYTE 16#01#;
-- enable receive interrupt

pic_8259mr constant LowLevelIO.PORTADDRESS := 16#21#;

end Mouse-Data;

I
I

-134- I

Distributed Issues Final Report

--% UNIT: Parameter Data Base Spec.

-- Effects: Provides rocket data types and initial values.

-X Modifies: No global data is modified.

--X Requires: No initialization is required. --

-- % Raises: No exceptions.

--X Engineer: R. Chevier
..

- PACKAGE SPEC : ParameterDataBase

This package defines the necessary default values for the rocket and

the targets. There are four different target types described in

" SimuLate.Sensor.TargSup. The type of rocket used to attack these targets

is described by the values below.

with Types:

package ParameterDataBase is

-- R O C K E T V A L U E S --

-- type DEGREESTYPE is digits 6 range 0.0..360.0;

-- type RATETYPE is digits 5;

subtype MAXROCKETRANGE is Types.WORD range 1.100;

-- MAXDEGRADED ROCKETS : MAX ROCKET_RANGE := 1;

-- type MASS TYPE is digits 5 range 10.0..100.0;

-- type THRUST_TYPE is digits 6 range 100.0..100000.0;

-- type BURNRATETYPE is digits 5 range 0.001..10.0;

-- type RESISTANCE TYPE is digits 5 range 0.001..100.0;

-- type DRIFTVELOCITY TYPE is digits 5 range 0.0..0.5;

subtype ROCKETTURNACCELTYPE is RATE-TYPE range 0.01..1000.0;

c mass : constant := 40.0; -- kgs

c fuet : constant : 300.0; -- kgs

c_thrust : constant : 6000.0; Newtons

c_burnrate : constant : 5.0; -- kgs/sec

c turnburn rate : constant : 0.05; -- kgs/degree

c forward-drag : constant := 0.1875; -- Newton-secs/meter (was 0.09375)

c_sidedrag : constant := 0.203125; -- Newton-secs/meter

c drift : constant : 0.0; -- meters/sec

c-turn-rate : constant := 200.0; -- degrees/sec

type ROCKETPARAMETER TYPE is record

KASS : Types.LONGFIXED := cmass;

FUEL : Types.LONGFIXED := c_fueL;

-135-

Distributed Issues Final Report

THRUST Types.LONG_FIXED c_thrust;
BURN_RATE Types.LONG_FIXED c_burn_rate; I
TURN_RNRATE Types.LONG_FIXED c_turn_burn_rate;

FORWARDDRAG Types.LONG_FIXED c_ forward drag;

SIDEDRAG Types.LONG_FIXED c side drag;

DRIFT Types.LONG_FIXED c drift;

TURNRATE Types.LONG_FIXED c_turn_rate;

end record; I

- T A R G E T V A L U E S --

type TARGETPARAMETER_TYPE is record

MAXVELOCITYY Types.METERS; -- maximum velocity in Y per intervaI

MAXVELOCITYX Types.METERS; -- maximum velocity in x per interval

DELTAVELOCITYX Types.METERS; -- aximum change in x per interva1

CHANGEDIRFRE : Types.WORDINDEX; -- freq that x dir changes in intrvLs

end record;

type TARGET PARAMSARRAY is array(Types.TARGET_CLASSTYPE) of

TARGETPARAMETER_TYPE;

TARGET PARAMS TARGET PARAMSARRAY :=

(Types.UNKNOWN =>

MAX VELOCITY Y => 2.000,

MAXVELOCITYX => 1.500,

DELTA_VELOCITY_X => 0.125,

CHANGEDIRFREQ => 25),

Types.T80 =>

MAXVELOCITYY => 1.750,

MAXVELOCITYX => 1.250,

DELTAVELOCITY_X => 0.125,

CHANGE DIRFREQ => 21),

Types.SA9 =>

MAXVELOCITYY => 1.875,

MAXVELOCITYX => 1.375,

DELTAVELOCITYX => 0.125,

CHANGEDIRFRED => 23),

Types.BMP2 =>

MAXVELOCITYY => 1.250,

MAXVELOCITYX => 0.875,

DELTAVELOCITYX => 0.125,

CHANGEDIRFREQ => 15));

-- To simplify, ail target types currently have the same DELTAVELOCITY_X

-- (meaning the same acceleration) and the same pixel size representation.

Therefore, they all have the same right and left border limits, and

-- consequently are all created within these borders.

right_borderLimit : constant := 3940.0;

-136-

Distributed Issues Final Report

Leftborder limit constant 60.0;

x_startLimit constant right_borderLimit - Left border timit;

targetstarty constant 3960.0;

target_startz constant 0.0;

end ParameterDataBase;

-137-

Distributed Issues Final Report

--4 UNIT: ROL Package Body Subunit. I
--X Effects: Supports alL Rocket Data Link functions of Simultator. --

-- % Modifies: No global data is modified. --

-- % Requires: No initialization is required. I
-- % Raises: No expLicitly raiseo exceptions are propagatpe-

-- % Engineer: T. Griest.

. .I

-- PACKAGE BOOY : Simulate.RDL (Rocket Data Link)

- - The RDL package provides tasks to interface to the Rocket Data Link

-- issuing messages for new rocket positions and receiving messages

commanding new rocket attitudes.

-- Modifications Log

. 88-10-30 : TEG => Original created.

mI
separate(Simutlate)

package body ROL is -- Rocket Data Link Simulator

stack-size : constant := 348; m

task type RockSup Type is

pragma PRIORITY(Config.rock_sup_priority);

end RockSupType;

for RockSupType'STORAGE_SIZE use INTEGER(Config.bytes_perstorageunit *
stack size);I

RockSup : RockSupType;

task body RockSupType is separate;

task body ReportBut Type is separate;

task body Guide Buf_Type is separate;

end ROL;

I
I
I

-138- I

Distributed Issues Final Report

..

-- % UNIT: Report_Buf Task Body Subunit. --

-- % Effects: Buffers Rocket report data between simulator and Control. --

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

"' TASK BOOY : Simulate.RDL.Report_Buf
-- I

The ReportBuf task acts as a buffer between the rocket data Link

support task RockSup and the Rocket.Control task which processes

" the rocket data. The task contains only accept statements for

rendezvous purposes to allow for schedule slippage from both sides.

"- The data is a list of the rockets new positions as they fly across

the battlefield. Rocket.Controi is the receiver of this list and

Rock sup is the supplier. This routine should be contrasted to Guidebuf.

Note that if for some reason the Rock Sup fails to deliver new rocket

positions, Rocket.Control will stilt display the old positions (but only

for one interval, after which if they are stilt missing are considered

to have destroyed themselves). Note also that even if there are no rockets
"- active, that a list is stilL passed with a Length of zero.

Modifications Log

-- 88-11-30 : TEG => Original created.

with Debug 10;

with Time-Stamp;

separate (Simulate.RDL)

task body ReportBuf Type is

use Types;
MSG COUNT : Types.WORD := 1;

ROCKET-MSG : Rocket.ROCKETMSG TYPE;

begin

ROCKETMSG.NLINROCKETS := 0; default

loop

select

accept PutReport(DATA : in Rocket.ROCKET MSG-TYPE) do

Time Stamp.Log(O066); --STP(0066) ReportBuf accept PutReport start

ROCKETMSG.NUM_ROCKETS := DATA.NUM ROCKETS; -- copy data

ROCKETMSG.ROCKET_LIST(Types.WORD INDEX(1)..DATA.NUM ROCKETS) :=

DATA.ROCKETLIST(Types.WORDINDEX(1)..DATA.NUM ROCKETS);

MSGCOUNT := 1;
TfmeStam!p.Log(0067); --STP(0067) ReportBuf accept PutReport end

-139-

Distributed Issues Final Report

end PutReport;

orI

accept GetReport(DATA :out Rocket.ROCKET NSG TYPE) do

T imtap.Log(0068); - -STP(0068) ReportSuf accept GetReport start
DATA.NUt4_ROCKETS :=ROCKETP4SG.NUN_ROCKETS;

DATA.ROCKETLIST(Types.WORDINDEX(l)..ROCKETMSG.NUMROCKETS)

ROCKET MSG.ROCKETLIST(Types.WORD_ INDEX(l). .ROCKETMSG.NUM_ROCKETS);

MSGCOUJNT :=;0;
Time_Stamp.Log(OO69); - -STP(0069) Report_Buf accept GetReport end

end Get_Report;

end select;I
end loop;

exception

when others =>

DebugIO.Put Line("REPORT BUF termination due to exception.");

end ReportBufType;

-140I

Distributed Issues Final Report

..

--% UNIT: Rocket Package Spec.

--% Effects: Provides structure for Rocket managment within BDS.

--X Modifies: No global data is modified. --

--X Requires: No initialization is required.

-- % Raises: No explicitly raised exceptions are propagated.

-- % Engineer: T. Griest.
..

"'I PACKAGE SPEC : Rocket

-' j This package contains the declaration to the control task which is

the main rocket processing task. It also declares the two main types

"'I used for processing rocket information.

-- Modifications Log

-- 88-11-05 : TEG => Original created.

with Types;

with Config;

with Sync;

package Rocket is

stack-size : constan, := 1936; -- in bytes

...

- - REPORT INFORMATION --

----------------.----------------.-----------

type ROCKET_ITEMTYPE is record -- provides essentials on a rocket

SYNCTAG : Sync.SEQTYPE;

ROCKETID : Types.WORD_INDEX;

POSITION : Types.POSITION TYPE;

end record;

type ROCKET_LISTTYPE is -- list of all rocket data

array(Types.WORDINDEX range c>) of ROCKET_ITEM_TYPE;

type ROCKETMSGTYPE is record

NUNROCKETS : Types.WORDINDEX;

ROCKETLIST : ROCKET_LISTTYPE(1..Config.maxrockets);

end record;

-- GUIDANCE INFORMATION --

type ROCKETGUIDE TYPE is record

-141-

Distributed Issues Final Report

ROCKET_ ID Types.WORDINDEX;

AIMPOINT Types.AIMPOINTTYPE;I

type ROCKET_GUIDE_LIST_TYPE is -- list of all guidance data

array(Types.WORD_ I.'DEX range ->) of ROCKET_GUIDE_TYPE;

type ROCKET_GUIDEMSGTYPE is record

NUM ROCKETS Types.WORD_ INDEX;

ROCKETGUIDELIST ROCKETGUIDELIST _TYPE(1..Config.rnax rockets);

end record;

task type Control Type is -- for overall engagement control

entry Start;

entry Get_NextReport(ROCKETREPORT _MSG :in ROCKET_MSG_TYPE);I

pragma PRIORITY(Config.controLpriority);

end Control Type;

for Control Tyoe'STORAGE _SIZE use INTEGER(Config.bytes~per storage unit

stack_size);I
Control ControlType;

end Rocket; - - package specification

-142-

Distributed Issues Final Report

..

--% UNIT: Rocket Package Body.

--% Effects: Provides structure for Rocket managment within BDS. --

-- % Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

.-

-- PACKAGE BODY : Rocket

The Rocket package provides all processing to maintain the rockets

in flight.

-- The rocket guidance activity is given overall control by the Control task.

-- "Control" is used to accept rocket reports, and is responsible for engagina

-- the targets, providing updates to the Graphics.Display task, and generating

the guidance messages for the Rocket Data Link. It achieves much of this

-- with the assistance of one (or more) Guidance task(s). The Guidance task

-. is responsible for taking a set of the rockets and producing a new

-- aimpoint for each rocket/target in that set. The activities of the

guidance task(s), as well as the Control task can be overlapped

"'I considerably, and therefore may benefit from the addition of processors.

-- Modifications Log

-- 88-11-25 : TEG => Original created.

-- 89-11-22 : MPS => AimpointInfo type created to allow less traffic on the

net.

witI Debug 10;

with Status; -- maintains number Rockets Active

with Shapes; -- for rocket shapes

with Graphics; -- for graphics operations/colors

with Distrib;

package body Rocket is

guidance_stacksize : constant := 660;

GUIDANCELISTERROR : exception; -- if guidance list does not match history

-- This history data is provided to a guidance task, which in turn processes

-- it and returns the next guidance information needed for each rocket.

type POSITIONDATATYPE is record -- containing rocket/target information

ACTIVE : BOOLEAN; -- if rocket was previously active

ROCKETPOS : Types.POSITIONTYPE; -- latest rocket position

TARGETPOS : Types.POSITION TYPE; -- latest target position

end record;

-143-

Distributed Issues Final Report

type POSITIONLISTTYPE is
array(Types.WORD_ INDEX lange >)of POSITION DATA_TYPE;

type AIMPOINT LISTTYPE isI

array(Types.WORD_ INDEX range <)of Types.AIMPOINT_TYPE;

AIMPOINT_ INFO POSIIIONLISTTYPE(1..Config.max_rockets);

NEXTGUIDEMSG ROCKETGUIDEMSGTYPE;

task type Guidance-Type is

entry History(AIMDATA :in POSITIONLISTTYPE);

entry Next Guidance(AIMPOINTLIST :out AIMPOINTLIST_TYPE);

pragma PRIORITY(Config.guidancepriority);

end Guidance_Type;

for GuidanceType'STORAGE SIZE use INTEGER(Config.bytesjer storage unit

guidance-stack-size);

Rocket-Guide :array(Types.WORD_ INDEX range 1..Distrib.nzn guide tasks)

tak od Gjdncyp i spaat;of
GuidanceType;i

task body Guince tType is separate;

end Rocket; - - package body

-144-

Distributed Issues Final Report

..

-- % UNIT: RockSup Task Body Subunit. --

--X Effects: Provides all Rocket Support for Simulator, including --

- -% target intercept detection. --

-- % Modifies: Updates state of rockets and targets in Simulator DBase.
--X Requires: No initialization is required. --

--% Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

-- Copyright(C) 1988, LabTek Corporation. Permission is granted to copy
-- and/or use this software provided that this copyright notice is included

-- and all Liability for its use is accepted by the user.

TASK BODY : Simulate.RDL.RockSup

- - The rocket support task provides the necessary rocket motion, based

on previous position and the application of a new guidance aimpoint.

-- It generates a new report "ROCKET_MSG" for a buffer task (ReportBuf)
-- to forward to the BDS Rocket.Control task. Likewise, the Rocket.Control

-- task issues guidance messages to the buffer task (Guide Buf) which are
-- made available to the Rock_Sup task. ROCKET/TARGET intercepts are

-- checked in the shared data base within the smulator. In such cases,

both the rocket and target are destroyed (marked inactive).

-- Modifications Log

-- 88-12-05 : TEG => Original created.

89-09-12 : MPS => Changed call to Traject to reflect new flight dynamics.

with Traject; -- trajectory planner

with Calendar;

with InterruptControt;

with Time-Stamp;

with Sync;

pragma ELABORATE(Traject, Calendar, InterruptControl, Time_Stamp);

separate (Simulate.RDL)

task body RockSupType is

use Calendar; -- for - operator

use T'pes; -- for operators

use Sync; for sequence operations

start position : constant Types.POSITIONTYPE

(Config.launchx,Config. Launchy,Config. taunchz);

-145-

Distributed Issues Final Report

ROCKET-MSG Rocket.ROCKETMSGTYPE;

GUIDE-MSG Rocket.ROCKET GUIDE_MSG_TYPE;I

GUIDE MSG INDEX Types.WORDINDEX;

REPORTMSGINDEX :Types.WORD_INDEX;

POSITION :Types.POSITION_TYPE; -- tem

SEQUENCETAG Sync.SEQTYPE := 0;

STARTTIME Catendar.TIME;

DELAYPERIOO DURATION;I

-- MAKEREPORT: process current rocket ID

procedure Make_Report(ID : Types.WORD_INDEX; POS :Types.POSITION_TYPE) isI

checks if rocket has collided with

-any targets or ground. If so, delete

-target(s) and rocket.I
DELTAX :Types.LONGFIXED;

DELTAY :Types.LONGFIXED;

DELTAZ :Types.LONGFIXED;I
DELTAT Types.LONGFIXED; - - time for rocket to reach ground

ROCKETPOS :Types.POSITION_TYPE;

begin - - of Make -Report

- -STP(0070) Rock Sup.Make Report startI

if POS.Z -c 0.0 then

ROCKETS(ID).ACTIVE := FALSE; - - destroy rocket3

-compute time it took to get to zero

DELTAX :POS.X -ROCKETS(ID).POSITION.X;

DELTAY POS.Y -RDCKETS(ID).POSITION.Y;I

DELTAZ POS.Z -ROCKETS(ID).POSITION.Z;

if DELTAZ =0.0 then

DELTAT :0.0;

else

DELTA_T :~Types.LONGFIXED(ROCKETS(ID).POSITION.Z/abs(DELTA_Z));

end if;

-find terminal position of Rocket3

ROCKETPOS.X :ROCKETS(ID).POSITION.X + DELTAT*DELTA_X;

ROCKETPOS.Y :ROCKETS(ID).POSITION.Y + DELTAT*DELTA_Y;

--TBD since targets are always at Z=0, collision point is always 0I

ROCKET POS.Z := ROCKETS(ID).POSITION.Z + Types.METERS(DELTAT*DELTAZ);

Now search target list to see if any targets within "kill-_radius"I
-- perimeter of rocket

for TARGET ID in TARGETS'range loop

InterruptControl.Di sabLe; -- access to shared data

if TARGETS(TARGET ID).ACTIVE then

DELTA-X := ROCKET POS.X - TARGETS(TARGET_ ID).POSITION.X 3
-146-

Distributed Issues Final Report

DELTAY := ROCKETPOS.Y TARGETS(TARGETID).POSITION.Y;

--TBD should use distance DISTANCE := Math.Sqrt(Types.METERS(DELTAX*DELTAX) +

--TBD Types.METERS(DELTA Y*DELTAY) +

--TBD Types.METERS(DELTAZ*DELTAZ)));

if abs DELTAX < Config.kiLL_radius and -- this makes square box

abs DELTA Y < Config.kilLradius -- around each target

then

TARGETS(TARGETID).ACTIVE := FALSE; -- destroy target

end if;

end if;

Interrupt Control.Enable;

end Loop;

else -- Rocket did not hit ground or target

REPORTMSGINDEX := REPORTMSG INDEX + 1;

ROCKETMSG.ROCKETLIST(REPORTMSG INDEX) := (SEQUENCE_TAGID,POS);

end if;

--STP(0071) RockSup.MakeReport end

end MakeReport;

- - ROCKET SUPPORT TASK BODY -°

begin

for ID in ROCKETS'range loop -- initialize to all inactive

ROCKETS(ID).ACTIVE := FALSE;

end loop;

STARTTIME := Calendar.CLOCK; -- find out when xeq begins

loop

--$TP(0072) RockSup task start

STARTTIME := START TIME + Config.intervat;

if SEQUENCE TAG Sync.SEQTYPE'Last then -- update TIMETAG to be abLe

SEQUENCETAG 0; -- to differentiate between

else -- stale and new reports

SEQUENCETAG SEQUENCE_TAG + 1;

end if;

--STP(0073) RockSup rendezvous with GuideBuf start

RDL.GuideBuf.GetGuide(GUIDEMSG); -- fetch Latest gjidance message

--STP(0074) Rock Sup rendezvous with GuideBuf end

Go through each rocket, and if active, apply trajectory to

current position for 1 interval.

GUIDEMSGINDEX 1; -- pointer msg.rocketguide list

REPORTMSGINDEX 0;

for ROCKETID in ROCKETS'range loop

if GUIDEMSGINDEX < GUIDEMSG.NUMROCKETS and then

ROCKETID = GUIDEMSG.ROCKETGUIDELIST(GUIDEMSGINDEX).ROCKET_ID

then

-147-

I
Distributed Issues Final Report

This rocket is in the list, see if it was previously active

if not ROCKETS(ROCKETID).ACTIVE then

fitter out guidance messages for rockets that have recently been

destroyed (but BDS doesn't know it yet)

if GUIDEMSG.ROCKETGUIDELIST(GUIDEMSGINDEX).AIMPOINT.ELEVATION =

Config.taunch elevation

then -- a new Launch

ROCKETS(ROCKET ID).ACTIVE := TRUE; -- Launch
ROCKETS(ROCKETID).POSITION := startyposition;
Make_Report(ROCKETID,start position); -- start at launcher

end if;

else

Now compute new X,Y,Z position.

Traject.GetNewPosition(ROCKETID,

GUIDE MSG.ROCKETGUIDELIST(GUIDEMSG INDEX).AIMPOINT,

POSITION);

MakeReport(ROCKETID,POSITION);

ROCKETS(ROCKETID).POSITION := POSITION;

end if; -- rocket active check

GUIDE MSG INDEX := GUIDEMSGINDEX + 1;

else -- no guidance for this rocket

if ROCKETS(ROCKETID).ACTIVE then

-- no guidance information for active rocket, simply don't move it

POSITION := ROCKETS(ROCKETID).POSITION;

Make Report(ROCKETID,POSITION); I
end if; -- rocket active check

end if; -- guide entry exists check

end Loop;

New report List has been generated. Send it to buffer task.

ROCKETMSG.NUMROCKETS := REPORTMSG INDEX;

--STP(0075) RockSup rendezvous with ReportBuf start

RDL.Report_Buf.PutReport(ROCKETMSG); -- issue next rocket report

--$TP(0076) RockSup rendezvous with ReportBuf end

Delay to make rocket motion reports periodic

DELAYPERIOD := STARTTIME - Catendar.CLOCK;

if DELAY PERIOD < 0.0 then

STARTTIME := CLOCK;

end if; I
--STP(0077) RockSup task end

delay DELAYPERIOD; l

-148- I

Distributed Issues Final Report

end Loop;

end RockSupType;

-149-

I
Distributed Issues Final Report

-- % UNIT: Sensor Package Body Subunit. --

--X Effects: Provides structure for all simulator Target motion. --

--% Modifies: Simulator target data is updated. --

--% Requires: Initialization is performed by Sensor.Initialize. --

--% Raises: TARGETCREATEERROR is raised if no room for more targets.--

--X Engineer: M. Sperry.

" PACKAGE BODY : Simulate.Sensor

" - The sensor package supports the targsup task by keeping a history

of the old target position, the current X velocity of the target, a

"' desired X velocity of the target, how bong to stay at that desired velocity I
"' and finally the attributes of the class of the target. The Y velocity

is constant with respect to the class of the target, as is the turning

frequency of the X direction.

-- Modifications Log

-- 88-10-22 : TEG => Original created.

-- 89-11-27 : MPS => Get_New ID, Get-NewPosition, and ActivateTarget created.

with InterruptControl;

with Math;

with ParameterDataBase;

with TimeStamp;

with Debug_10;

pragma ELABORATE(Math, Debug_10, InterruptControL);

separate(Simulate)

package body Sensor is -- Target Sensor Simulator I
use Types;

type HISTORYREC is record I
OLDPOS : Types.POSITION_TYPE;

CURRENTVELX Types.METERS;

DESIREDVELX : Types.METERS; -- generated randomly every CHANGE DIR FREI

CHANGEDVELTIME : Types.WORD INDEX; -- intervals since DESIRED was changed

ATTRIBUTES : ParameterDataBase.TARGETPARAMETERTYPE;

end record;

type HISTORYTYPE is array(Types.TARGETINDEXTYPE) of HISTORYREC;

TARGET-HISTORY : HISTORYTYPE;

LASTUSEDTARGET_ID : Types.TARGETINDEXTYPE;

1
-150- I

Distributed Issues Final Report

procedure InitiaLize is

SUBPROGRAM BODY : Simutate.Sensor.initiaLize

Initialize is responsible for setting the LASTUSED TARGETID to the first

-- allowable value of that type. ALso, it sets aLL targets to an inactive

-- (FALSE) state.

begin

LASTUSEDTARGET_ ID := Types.TARGET_INDEXTYPE'first;

for ID in Types.TARGET_INDEX TYPE Loop

TARGETS(ID).ACTIVE := FALSE;

end Loop;

end Initialize;

function GetNewID return Types.TARGET_INDEXTYPE is

" SUBPROGRAM BODY : Simulate.Sensor.GetNew_ ID
-I

To simplify the code in TargSup, this function keeps track of the Last

" target id used (a package Level variable in Sensor.ab) and returns a new

target id that is not currently being used. The target id's rotlover at

-I Config.max_targets.
-I

TARGETID Types.TARGET_ INDEXTYPE;

TARGETCREATEERROR EXCEPTION;

begin

TARGETID LASTUSEDTARGETID;

Loop -- Loop through each target id starting from LASTUSEDTARGET_ID

if not TARGETS(TARGET ID).ACTIVE then

LASTUSEDTARGETID := TARGET_ID;

if LASTUSEDTARGETID = Types.TARGETINDEXTYPE'Last then

LASTUSEDTARGETID Types.TARGETINDEXTYPE'first;

end if;

exit;

else

if TARGETID Config.maxtargets then

TARGETID Types.TARGETINDEXTYPE'first;

else

TARGET_I0 TARGET ID + 1;

end if;

if TARGETID LASTUSEDTARGETID then -- no more room for targets,

raise TARGETCREATEERROR; -- but told to create one

end if;

end if;

end l oop;

-151-

Distributed Issues Final Report

return TARGETID;

exceptionI
when TARGETCREATEERROR =>

Debug_ !O.Put(6'TARGETCREATEERROR raised in Simate.Sensor.GetNew_ IDII);

end Get New ID;I

procedure ActivateTarget(TARGETID :Types.TARGET_INDEXTYPE) is

--II
--ISUBPROGRAM BODY :Simujate.Sensor.Activate_Target

-- ActivateTarget initializes the record which controls the target'sI

Ihistory. It also assigns a random new starting position (in X only,

the starting Y and Z positions are fixed) and a new class. The class
is chosen randomly via the package Math.

NUMOFCLASSES Types.WORDINDEX;

CLASS Types.TARGET_CLASS_TYPE;

POSX Types.METERS;

MAXXVEL Types.METERS;

beg in

-Limit the access to the shared data base in Simulate.

Interrupt Control .Disable;

.Initialize Simulate.TARGETS data base.I

TARGETS(TARGET_ ID).ACTIVE :=TRUE;

TARGETS(TARGET_ ID).POSITION.Y rypes.LONG_ FIXED(I
ParameterDataBase.target start y);

TARGETS(TARGET_ ID).POSITION.Z Types.LONG FIXED(

Parameter Data-Base. target startz);

POSX Math.GetRandom_Nuil(Types.METERS(I

ParameterDataBase.x-start_ Limit));

POSX POSX + ParameterDataBase.Left -border_ Limit;

TARGETS(TARGET_ ID).POSITION.X :=Types.LONGFIXED(POSX);I
NUMOFCLASSES :=Types.WORD_ INDEX(Types.TARGET_CLASS_TYPE'pos(

Types.TARGET_CLASSTYPE'last));

CLASS :=Types.TARGETCLASSTYPE'vaL(Math.Get _RandomNLxi(NUMOF _CLASSES+1));I
TARGETS(TARGET_ ID).TARGET_CLASSZ: CLASS;

-Enable the interrupts again.

Interrupt Control .Enabte;

-Initialize Sensor.TARGETHISTORY data base.

TARGETHISTORY(TARGET ID).OLD-POS :=TARGETS(TARGET-ID).POSITTON;

-152-

Distributed Issues Final Report

TARGETNISTORYCTARGET ID).ATTRIBUTES :

ParameterDataBase.TARGETPARAMS(CLASS);

MAXXVEL :=TARGETHISTORY(TARGET_ ID).ATTRIBUTES.MAX_VELOCITYX;

TARGETHISTORY(TARGET IO).CURRENTVELX Math.GetRandom_-Nuim(

Types.METERS(2 * MAXXVEL));

TARGET HISTORY(TARGET ID).CURRENTVELX MAXXVEL

TARGETHISTORY(TARGETID).CURRENTVELX;

TARGETHISTORY(TARGETID).CHANGEDVELTIME :=0;

TARGETHISTORYCTARGET ID).DESIREDVELX Math.GetRandomNui(

Types.METERS(2 * MAXXVEL));

TARGET HISTORY(TARGET ID).DESIRED VEL X MAX-X-VEL -

TARGET HISTORY(TARGET_ ID).DESIRED_VELX;

end Activate-Target;

procedure GetNewPosition(TARGETID :Types.TARGETINDEXTYPE) is

SUBPROGRAM BODY :Sensor.GetNewPosition

Get_New_Position is responsible for updating the history of the targets

-- and more importantly to return to TARGETS a new target position in the

-.ITypes.POSITIONTYPE, which is made up of Types.LONGFIXED. The target

-- is not allowed to leave the battlefield border area, therefore it changes

--Idirections before bouncing against the side of the border.

DIR FREQ Types.WORDINDEX;

MAXXVEL Types.METERS;

MAX Y VEL Types.METERS;

DELTA-X Types.METERS;

CLASS Types.TARGETCLASS_TYPE;

INTERVALS-LEFT Types.METERS;

XPOSEST Types.METERS;

begin

Time_Stamp.Log(O122); --STP(0122) Sensor.Get-NewPosition start

*Place often used but complex address calculation type variables in

-- local space.

CLASS :=TARGETS(TARGET_ ID).TARGETCLASS;

DIR FREQ :=TARGETHISTORY(TARGET ID).ATTRIBUTES.CHANGEDIR_FREQ;

MAXXVEL TARGETHISTORYCTARGET ID).ATTRIBUTES.MAXVELOCITYX;

MAXYVEL TARGETHISTORY(TARGET_ ID).ATTRIBUTES.MAXVELOCITYY;

DELTA X :=TARGET-HISTORY(TARGET-ID).ATTRIBUTES.DELTA VE;C,.,iTYX;

-Check to see if it is time to change dir.

if TARGETHISTORY(TARGET_ ID).CHANGED VELTIME =DIR_FREC then

Time to change the X direction. The DESIRED VEL X is a randomn numb~er of

-153-

Distributed Issues Final Report

-Types.METERS between +MAX X VEL and -MAXXVEL.

TARGET HISTORY(TARGETID).DESIREDVELX Math.GetRandoNun(

Types.METERS(2 * MAX_X_VEL));

TARGET_HISTORYCTARGET 1D).DESIREDVELX MAXXVEL - I
TARGET HISTORY(TARGET_ ID).DESIRED-VELX;

TARGETHISTORY(TARGETID).CHANGED-VELTIME :=0;

end if;

Increment the counter that keeps track of when it is time to change direction

TARGET HISTORY(TARGETID).CHANGEDVEL_TIMEI

ARGET-HISTORY(TARGET_ ID).CHANGED-VELTIME + 1;

-Avoid hitting the battlefield border area.

if TARGETHISTORYCTARGET ID).CURRENTVEL-X > 0.0 then

if TARGETS(TARGETID).POSITION.X < Parameter_Data_Base.Left-border_ Limit

and TARGETHISTORY(TARGETID).DESIREDVELX > 0.0 then -- going LeftI
TARGETHISTORY(TARGET_ ID).DESIREDVELX :

-TARGETHIST0RY(TARGET_ ID).DESIRED_VELX;

end if;I
else

if TARGETS(TARGETID).POSITION.X > Parameter_DataBase.right_border_- Limit

and TARGET -HISTORY(TARGET -ID).DESIRED_-VEL_-X < 0.0 then -- going right

TARGETHISTORYCTARGETID).DESIREDVELX :

-TARGETHISTORY(TARGET_ ID).DESIRED_VEL_X-
end if;

end if;

-Adjust the CURRENTVELX by DELTAX if need be.

if TARGETHISTORY(TARGET_ ID).CURRENTVELX <

TARGETHISTORY(TARGET ID).DESIREDVEL_X

then TARGT HSTOY(TAGETID)CURRNT ELI
TARGETHISTORY(TARGET ID).CUCURRENTVELXAX

TARGETGETHISTORY(TARGET_ ID).CURRENTVELX > ETX

TARGET HISTORY(TARGET_ ID).DESIRED_VEL_XI
then

TARGETHISTORY(TARGETID).CURRENTVEL-X

TARGET I4ISTORY(TARGETID).CURRENT_VEL_X - DELTA_X I
end if;

-- scertain the new position based on the velocities of the class, saving

-the oLd position first, and guarantee mutaLLy exclusive access.[

TARGETHZSTORY(TARGET_ ID).OLDPOS : TARGETS(TARGETID).POSITION;

InterruptControL .Disable;

if TARGETS(TARGET_
ID).ACTIVE

then
14

Distributed Issues Final Report

TARGETS(TARGET-ID).POSITION.X :=TARGETS(TARGET_ ID).POSITION.X -

Types.LONG-FIXED(TARGETHISTORY(TARGET_ ID).CURRENTVEL_X);

TARGETS(TARGET-ID).POSITION.Y :

TARGETS(TARGETID).POSITION.Y - Types.LONG-FIXED(MAX_YVEL);

-The Z direction is not currentLy imptemented for targets.

TARGETS(TARGETID0).POSITION.Z :=Types.LONGFIXED(O.0);

end if;

InterruptControL .Enabte;

Time_-Stamp.Log(0123); --STP(0123) Sensor.GetNewPosition end

end GetNew Positiorn

task body TargSup-Type is separate;

end Sensor; - - body

-155-

I
Distributed Issues Final Report

--% UNIT: Shapes Package Spec. I
-- % Effects: Provides all graphics symbology. --

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. -- I
--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest / M. Sperry.
- - .

PACKAGE SPEC : Shapes

- - Package Shapes is responsible for determining the relative offsets

which define the shapes of all the possible symtols that can be drawn.

The reticle is the pointing box that is controlled by the mouse. Note

that where the coordinate (0,0) is defined in terms of the shapes of

-- the object. For example the nose of the rocket is considered to be

" explosive in our case. Therefore the nose of the rocket has the coordinates

"-I (0,0). Likewise, the center of the target has the (0,0) coordinate. The

objects are all manipulated by their absolute coordinates or rather,

the coordinate (0,0).

- Modifications Log

-- 88-10-12 : MPS => Original created.

-- 89-08-08 : MPS => Adjusted to work with new DOC compiler |I
with Types;

with Config;

package Shapes is

type SYMBOL_TYPE is (ROCKET, TARGET, RETICLE, DOT, ZERO, ONE, TWO, THREE, FOUR, I
FIVE, SIX, SEVEN, EIGHT, NINE, HORIZONTAL, VERTICAL);

type PIXEL is record
A;Types.COORDINATE range Config.entire_screen-teft..Config.entire_screen_right;

Y:Types.COORDINATE range Config.entirescreen_top..Config.entire_screen_bttom;

end record;

type REL_PIXEL is record -- offset from base of pixel

XOFFSET : Types.RELCOORDINATE; -- positive goes right

YOFFSET : Types.REL COORDINATE; -- positive goes down

end record;

type PIXEL_LIST is array(Types.WORD INDEX range <>) of RELPIXEL;

type OBJECT_PTR is access PIXEL_LIST;

-156- I

Distributed Issues Final Report

reticLe left constant -5; -- constants used to check if
retic~e~right constant 5; -- reticle going past screen

reticLe_top :constant -5; -- boundaries.

reticLe-bottom :constant := 5;

The following two constants determine how far the target center can

-- be in meters from the indicated reticle center and still allow

-- aquisition of the target for launching a rocket. They are not the

-. same in X and Y, since the reticle is slightly rectangular.

reticte-x-error: constant :=40.25; -- METERS to allow target aquisition

reticLeyerror: constant :=49.50; -. METERS to allow target aquisition

NUMERIC array(O. .9) of SYMBOLTYPE :=(ZERO, ONE, TWO, THREE, FOUR,

FIVE, SIX, SEVEN, EIGHT, NINE);

number-width :constant :8; - - widest number in pixels

ml :constant :=-1;
m2 :constant :-2;

m3 :constant :-3;

m4constant :-4;

m5 : constant -5;

m6 :constant :=-6;

m7 tconstant -7;

MB : constant :=-8;

OBJECTPTRTABLE : array(SYMBOLTYPE) of OBJECTPTR

(TARGET => new PIXEL-LIST'(

(O,m2),

(m2,O), (0,0), (2,0),

(ml,1), (1,1),

(0,2))

ROCKET => new PIXELLIST'(

(0,0),

(0,1),

(0,2),

(0,3),

RETICLE => new PIXELLIST'(

(rm5,rm), (m4,m56),(m3,m5), (3,rn5), (4,m5), (5,m5),
(m5,fW.), (5,m4),

(m56,m3), (O,m3), (5,mn3),

(O,m2),

(O,ml),

(m3,O), (m,O), (ml,O), (0,0), (1,0), (2,0), (3,0),

(0,1),

(0,2),

-157-

Distributed Issues Final Report3

(rm,3), (0,3), (5,3),

(m5,4), (5,4),

(m5,5),(m4,5),(mf3,5), (3,5),(4,5),(5,5)),

DOT => new PIXELLIST'((0,O),(O,O)), I

ZERO => new PIXEL-LIST'((l,mS),(2,m),(3,S),(4,fl8),(,mB),

(0, m7), (6,m7),I

(0,m6), (4, 5,m6 (6,m5),

(0,m4), (3,m4), (6,m4),

(O,m3), (2,ff3), (6,mr3),

(0,m2),(l,m2), (6,m2),

(O,ml), (6,ml),

(1,0), (2,0), (3,0), (4,0), (5,0)),

ONE => new PIXELLIST'((4,rri),

(3, m7) ,(4, m7),

(4,mr6),

(4,m5),

(4,m4),

(4,m3),
(4,Qn),

(4,ml),

(3,0), (4,0), (5,0)),

TWO => new PIXEL LISTF((1,m8),(2,m8),(3,mB),(4,m8),

(0,M7), (5,m7),

(5,fm6),

(4,m5),

(,),(3,mn4),

(2,m3),

(0,ml),

(0,0), (1,0), (2,0), (3,0), (4,0), (5,0)),

THREE => new PIXELLIST'((1,m8),(2,m8t),(3,mf8),

(O,m7), (4,m7),

(4, m6),

(4,m15),

(2,rm4), (3,m4A),
(4,m3),

(4,m2),

(0,ml), (4,ml),

(1,0), (2,0), (3,0)),3

FOUR => new PIXELLIST'((4,m8),

(3,m7),(4,m7),3
(2,m6), (4,m6),

01,m5), (4,m5),

(0,m4), 1, m4), (2, rn4+), (3, m4), (4, m4), (5, ,m4

-158-

Distributed Issues Final Report

(4, M3),
(4,m2),
(4,rnl),

(3,0), (4,0), (5,0)),

FIVE => new PIXELLIST'((l,mB),(2,mB),(3,m),(4,mBl),(5,mB),

(0, m7),

(0, m6),

(O,m56),

(1,m4), (2,m4), (3,rn4), (4,m4),

(5,m3),

(5,mn2),

(5,ml),

(0,0), (1,0), (2,0), (3,0), (4,0), (5,0)),

SIX => new PIXELLIST'((3,m8),(4,m8),

(2, m7),

(1,m7),

(0,n6),

(0,m56), (1,rr), (2,mn5), (3,m5),
(0,rn4), (4,m4A),

(0,mf3) , (4,m3),

(0,m2), (4,m2),

(0,ml), (4,ml),
(1,0), (2,0), (3,0)),

SEVEN => new PIXELLIST'(0,m8), (2,rm8), (3,rnB), (4,mB), (5,mB),

(0,m7), (5,m7),

(4,mr6),

(3,m5),

(2,m4),

(1,m3a),

(0,m2),

(0,ml),

EIGHT => new PIXELLIST'((l,m8),(2,mB8),(3,fl8),(4,m8i),

(0,m7), (5,m7),

(0,mf6), (5,m6),

(0,m56), (5,m5),

(1,mn4), (2,mn4), (3,mni4), (4,m4),

(0,m3) , (5 ,m3),

(0,m2), (5,m2),

(0,ml), (5,ml),

(1,0), (2,0), (3,0), (4,0)),

NINE => new PIXELLIST'(1,m8),(2,m8),(3,flm8),(4,m8),

(0,m7), (5,m7),

(0,mf6), (5,m6),

(0,m56), (5,a6),

(1 m4) , (2,rn4) , (3,"4), (4,mr4), (5 ,m4),

-159-

I
Distributed Issues Final Report

(5,m3),I

(4,m2),

(3,ml),

(1,0), (2,0)),

HORIZONTAL => new PIXEL_LIST'((O, 0),(1, 0),(2, 0),(3, 0),(4, 0),(5, 0),

(6, 0),(7, 0),(8, 0),(9, 0),(10,0),(11,0),

(12,0),(13,0),(14,0),(15,0),(16,0),(17,0),

(18,0),(19,0),(20,0),(21,0),(22,0),(23,0),

(24,0),(25,0),(26,0),(27,0),(28,0),(29,0),

(30,0),(31,0),(32,0),(33,0),(34,0),(35,0),

(36,0),(37,0),(38,0),(39,0),(40,0),(41,0),

(42,0),(43,0),(44,0),(45,0),(46,0),(47,0),

(48,0),(49,0),(50,0),(51,0),(52,0),(53,0),

(54,0),(55,0),(56,0),(57,0),(58,0),(59,0),

(60,0),(61,0),(62,0),(63,0),(64,0),(65,0),

(66,0),(67,0),(68,0),(69,0),(70,0),(71,0),

(72,0),(73,0),(74,0),(75,0),(76,0),(77,0),

(78,0)),

VERTICAL > new PIXEL_LIST'((O, 0),(0, 1),(0, 2),(0, 3),(0, 4),(0, 5),

(0, 6),(0, 7),(0, 8),(0, 9),(0,10),(0,11),

(0,12),(0,13),(0,14),(0,15)));

end Shapes;

I
I
I

I'

-160-I

I

Distributed Issues Final Report

--% UNIT: Simulate Package Spec.

--X Effects: Provides shared data base for Simulator. --

-- Modifies: No global data is modified. --

--X Requires: Individual tasks are responsible for init. of global data.--

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

- PACKAGE SPEC : Simulate

"'- The Simulate package is used to provide input and output to the

"- BDS system. It provides rocket flight paths and target generation.

-- Modificiations Log

-- 88-10-15 : TEG => Original created.

with Target;

with Rocket;

with Sync;

with Config;

package Simulate is -- Overall simulation package

package Sensor is -- Target Sensor Simulator

stacksize : constant := 114; -- in bytes

task type TargSupType is

pragma PRIORITY(Config.targsup priority);

entry NextTargetMsg(Data : out Target.TARGET_MSGTYPE);

end TargSupType;

for TargSupType'STORAGESIZE use INTEGER(Config.bytesperstorage unit *

stack size);

TargSup : Targ SupType;

end Sensor;

package ROL is -- Rocket Data Link Simulator

reportbuf_stack size : constant : 302; -- in bytes

guide bufstacksize : constant : 744; -- in bytes

-- The Report Buf task buffers Rocket Reports from the RockSup task

-- and provides them to the Rocket.Controt task

task type Report Buf Type is

pragma PRIORITY(Config.report bufpriority);

entry PutReport(DATA : in Rocket.ROCKETMSGTYPE);

-161-

Distributed Issues Final Report

entry GetReport(DATA :out Rocket.ROCKETMSGTYPE);

end ReportBufType;I
for ReportBufType'STORAGE_SIZE use INTEGER(Config.bytesj~er storage_unit

Report_Buf :ReportBufType; reotbfsakiz)

-The GuideBuf task buffers new Guidance messages from the Rocket.Controt

-task for delivery to the RockSup task.

task type GuideBufType is

pragma PRIORITY(Config.guide -buf priority);

entry Put Guide(DATA in Rocket.ROCKET GUIDEMSG_TYPE);

entry Get Guide(DATA out Rocket.ROCKETGUIDE MSGYPE);

end GuideBuf_Type;I
for GuideBuf_Type'STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit

GuideBuf Guide Buf Type;*gudbfstcsie

end RDL;

end Simulate;

-162-

Distributed Issues Final Report

..

--% UNIT: SimuLate Package Body.

--% Effects: Provides shared data base for Simulator. --

--% Modifies: No global data is modified. --

--% Requires: Individual tasks are responsible for init. of global data.--

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

PACKAGE BOOY : Simulate

-- This package is responsible for implementation of the "driver"

-- for the BDS. The simulator provides random target generation (subject

to a limit maximum), rocket trajectories, and target motion.

-- Modifications Log

-- 88-10-29 : TEG => Original created.

with Types;

-- Simulator package to provide testing of BDS system

package body Simulate is -- Overall simulation package

-- TARGET DATA --

-----------------------------.---.--.------------

type TARGETSIMTYPE is record -- provides individual target information

ACTIVE BOOLEAN;

POSITION : Types.POSITION_TYPE;

TARGETCLASS : Types.TARGETCLASSTYPE;

end record;

type TARGETSTYPE is

array(Types.WORD_INDEX range 1..Config.max_targets) of TARGETSIMTYPE;

TARGETS : TARGETS_TYPE;

...

-- ROCKET DATA --

type ROCKET_SIMTYPE is record -- provides individual rocket information

ACTIVE : BOOLEAN;

POSITION : Types.POSITIONTYPE;

end record;

-163-

I
Distributed Issues Final Report

type ROCKETSTYPE is

array(Types.WORD_INDEX range 1..Config.maxrockets) of ROCKET SIM_TYPE;

ROCKETS : ROCKETSTYPE;

package body Sensor is separate; -- Target Sensor SimuLator

package body RDL is separate; -- Rocket Data Link SimuLator

end Simutate; -- body

I
I
I
I
I
I
I
I
I
I
I
I
I

-164- I

Distributed Issues Final Report

--% UNIT: Status Package Spec.

--X Effects: Maintains indicators and statistics on graphics display. --

-- Modifies: Flags are cleared in spec. when values are displayed. --

--X Requires: InitiaLization must be signaled by main for first display.--

--X Raises: No expLicitLy raised exceptions are propagated. --

-- % Engineer: M. Sperry.

-- I

" PACKAGE SPEC : Status
--J

The purpose of the Status specification package is to provide visibility

to the data base which holds the requests from the mouse, et. al. The

"- requests are entered into a data table (called STATUSCONTROL) and then

-. the table is checked to see if any updating of the statistics needs to be

-I done. The checking of the table is done at an atomic Level to prevent

the shared data from being corrupted at critical times. The commands are

processed from the mouse interrupt as mode first, then reset if there are

" two commands to perform.

-'I

-- Modifications Log

88-11-08 : MPS => Original created.

with Types;

with Config;

package Status is

stacksize : constant := 252;

type MOOE TYPE is (AUTOMATIC,MANUAL);

type STATUSTYPE is (AIRBORNE, TRACKED, EXPENDED, DESTROYED);

subtype RESETSTATUSTYPE is STATUSTYPE range EXPENDED..DESTROYED;

type STATUS_RECORD is record

DATA : Types.WORD := 0; -- new statistic

DISPLAYED : BOOLEAN := FALSE; -- need to display

end record;

type STATUS_TYPE_ARRAY is array(STATUS_TYPE'FIRST .. STATUSTYPE'LAST) of

STATUS-RECORD;

-- define shared variables

-165-

1

Distributed Issues Final Report

MODE MODETYPE := MANUAL; 1

MODE-DISPLAYED BOOLEAN := FALSE;

STATUS-CONTROL STATUSTYPEARRAY;

REQ_COUNT Types.WORD := 0;

STATUS-ERROR EXCEPTION; -- if data negative

-- define subprograms and tasks

procedure InitiaLize; -- initiatization of screen

task type UpdateType is

entry Signat;

pragma PRIORITY(Config.updatepriority);

end UpdateType;

for UpdateType'STORAGE_SIZE use INTEGER(Config.bytesyperstorage_unit

stack-size);

Update Update_Type;

end Status;

I
I
I
I
I
I
I
I
I

-166- I

Distributed Issues Final Report

..

-- % UNIT: Status Package Body.

-- Effects: Maintains indicators and statistics on graphics display. --

-- % Modifies: Flags are cleared in spec. when values are displayed. --

--X Requires: Initialization must be signaled for first display. --

- Raises: No explicitly raised exceptions are propagated. --

-- X Engineer: M. Sperry.

" PACKAGE BODY : Status
"-I

The purpose of the status package body is the implementation of the status

"'I update task. Although operating at a low priority, the update task updates

the various statistics by a rendezvous with the graphics task.

-- Modifications Log

-- 88-11-08 : MPS => Original created.

with Graphics;

with InterruptControl;

with Shapes;

with Machine-Dependent;

with Interrupt Controt;

with Debug_10;

with Time-Stamp;

pragma ELABORATE(Graphics, InterruptControl, Debug_10, Time_Stamp);

package body Status is

use Types; -- for visibility to '+';

procedure Initialize is

-- SUBPROGRAM BODY : Status.Initiatize

This procedure is responsible for performing a rendezvous with graphics

for the purpose of printing the statistics titles. After this has been

-- done, this procedure signals the Status.Update task causing the initial

values of all the statistics to appear as well.

type TITLERECTYPE is record

X,Y : Types.WORD;

TEXT : STRING(1..Config.statstitle max length);

COLOR : Graphics.COLORTYPE;

end record;

-167-

I
Distributed Issues Final Report

EMPTY constant STRING := ""; I
TITLES : array(1..Config.number of titles) of TITLERECTYPE

((0,0, "Airborne ",Graphics.status_color),

(0,1, " Rockets: ",Graphics.status_color), I
(0,3, "Tracked ",Graphics.status_color),

(0,4, " Targets: ",Graphics.status_color), I(0,8, "Totals "1,Graphics.status_color),i

(0,10,"Expended ",Graphics.status_color),

(0,11," Rockets: ",Graphics.statuscolor),

(0,13,"Destroyed ",Graphics.status_color),

(0,14," Targets: ",Graphics.status_color),

(0,18,"Mode: ",Graphics.status_color),

(0,20," Manual ",Graphics.status_color),

(0,22," Automatic",Graphics.statuscolor)); =
begin

for I in 1..Config.number of titles Loop

Graphics.Display.PrintTittes(TITLES(l).X,TITLES(1).Y,

TITLES(1).TEXT,

TITLES(I).COLOR);

end loop;

Graphics.Display.Print_Tittes(O,O,EMPTY,Graphics.status_color);

InterruptControl.Disable; -- go atomic

Status.REQ COUNT := Status.REQCOUNT + 1; -- signal a request (print zeroes) I
Interrupt Control.EnabLe;

Status.Update.Signal; -- display statistics values

end Initialize;

task body UpdateType is

--I I
-- TASK BOOY : Status.Update

This task is used as a low priority task which ensures that updates to I
-- the statistics are performed. Only those stats which have changed since

the Last update are written to the screen.

--I n

use Types; -- for visibility to "+"

x_start : constant : 11; - column that statusbox starts in x

x-end : constant := 90; -- end column of statusbox

y_topstart_A : constant : 307; -- status_box top AUTOMATIC

y_bottomstartA : constant : 322; -- statusbox bottom AUTOMATIC

y top startM : constant 278; -- status_box top MANUAL

y bottomstartM : constant := 293; -- statusbox bottom MANUAL

manualoffset : constant := 29; -- offset to draw statusbox

box-start : constant :1 1; range of components that

boxend : constant := 4; -- make up statusbox.

base-x : constant Types.COORDINATE := 120;-- x end of all statistics

-168-

I

Distributed Issues Final Report

airborney :constant Types.COORDINATE 25; -- y Location of stat
trackedy :constant Types.COORDINATE 67; -. y Location of stat

expendedy :constant Types.COORDINATE 165; -- y Location of stat

destroyedy :constant Types.COORDINATE 207; -- y location of stat

ystatistics :constant array(STATUSTYPE'first .. STATUS TYPE'Last) of

Types.COORDINATE :=(airborne-y, trackedy, expended-y, destroyed y);

type STATUSOLD is array(STATUSTYPE'first .. STATUS TYPE' Last,

1 .. Config.statistics Length) of Graphics.MOVERECORD;

NEXTMODE MODE-TYPE;

DISPLAYREQUIRED BOOLEAN;

NEXTDATA Types.WORD;

BOX-LIST Graphics.MOVELISTTYPE(Types.WORD_INDEX range box start. .box-end);

DATA-OLD STATUSOLD;

WORKLIST Graphics.MOVE_LIST_TYPEdl .. Config.statistics Length);

MOVEPRIORITY Graphics.PRIORITY_TYPE :=Graphics.LOWJ;

procedure Initialize is

SUBPROGRAM BODY :Status.Update.Initiatize

A procedure which intializes the DATA_-OLD data base. This procedure does

NOT cause the digits to be drawn. Then, it initializes the status-box
around 'manual. Again, it does not cause the status -box to be drawn. A

wakeup call from the main task will cause it to be drawn.

beg in

for I in STATUSTYPE'first .. STATUS_TYPE'Last loop

for J in 1 .. Config.statisticsLength Loop

DATA OLD(I,J).XYOLD (Types.COORDINATE(base-x),Types.COORDINATE(ystatistics(l)));

DATA OLD(I,J).XY_NEW (Types.COORDINATE(basex),Types.COORDINATE(ystatistics(l)));

DATA OLD(I ,J).OBJECT Shapes.ZERO;

DATA OLD(I,J).COLOR Graphics.status_cotor;

end loop;

end loop;

-Now initialize top of status-box

BOXLIST(1).XYOLD

(Types .COORDINATE(x s tart), Types. COORDINATEdy top 5 tartA))

BOX LIST(l).XYNEW :

(Types.COORDINATE(xstart),Types.COORINATE(ytopstartA));

BOX-LIST(l).OBJECT Shapes.HORIZONTAL;

BOX LIST(l).COLOR Graphics.status box coLor;

-define bottomn of status-box

-169-

Distributed Issues Final Report

BOXLIST(2).XYOLDI
(Types.COORDINATE(x start), Types.COORDINATE(y bottom-start A));

BOXLIST(2).XY NEW :

(Types.COORDINATE(x start), Types.COORDINATE(y bottomn-start A));I
BOXLIST(2).OBJECT Shapes.HORIZONTAL;

BOX_LIST(2).COLOR Graphics.status_box coLor;

-define left side of status-box

BOXLIST(3).XY OLD

(Types.COORDINATE(x start), Tyoes.COORDiNATE(y top start A));
BOXLIST(3).XY NEW :

(Types.COORDINATE(x start), Types.COORDINATE(y top start A));

BOX LIST(3).OBJECT Shapes.VERTICAL;I
BOXLIST(3).COLOR Graphics.status_box color;

-define right side of status-box

BOX LIST(4).XYOLD

(Types.COORDINATE(x end), Types.COORDINATE(y top startA));

BOX LIST(4).XY_NEW :=I
(Types.COORDINATE(x end), Types.COORDINATE(y top startA));

BOX LIST(4).OBJECT Shapes.VERTICAL;

BOX LIST(4).COLOR Graphics.status_box~ccLir;

exception
when others => DebugIO.Put_Line("Exception raised in Status.InitiaLizell);

end Initialize;

procedure Update Box(NEXTMODE :MODE_TYPE) is

-- SUBPROGRAM BODY :Status.Update.Update_Box

-- A procedure which updates the four objects which represent the status-boxI

--Isurrounding one of the modes.

OFFSET :Types.WORD;

beg in

Time_Stamp.Log(OO78); - -STP(0078) Status.Update_Box start

if NEXTMODE =AUTOMATIC then - draw status -box at 'automatic,

BOXL!ST(1).XY-NEW.Y T ypes.COOROINATE(Y top start A);

BOXL!ST(2).XY-NEW.Y T ypes.COORDINATE(y bottonistart_A);I

BOXLIST(3).XYNEW.Y Types.COORDINATE(y top startA);

BOXLIST(4).XY-NEW.Y T ypes.COORDINATE(y top startA);

else - draw status-box at 'manual'I
BOXLIST(1).XYNEW.Y Types.COORDINATE(y top startM);

BOX LIST(2).XY NEW.Y Types.COORDINATE(y bottom-start_M);

-1I70-

Distributed Issues Final Report

BOX LIST(3).XY NEW.Y Types.COORDINATE(y top start ti);

BOXLIST(4).XY_NEW.Y Types.COORDINATE(y top start_M);

end if;

-- Rendezvous with Grapbics to draw new status-box

TimeStanmp.Log(OO79); --STP(O079) Status.UpdateBox rendezvous with Graphics start

Graphics.Display.Move(MOVE_PRIORITY, BOITTpsWRNE range box start. .box-end));

TimeStarrp.Log(008. -$TP(0080) Status.UpdateBox rendezvous with Graphics end

-- Update status-box Lists

for I in Types.WORDINDEX range box_start .. box end Loop

BOX LIST(I).XY OLD :=BOXLIST(I).XY_NEW;

end Loop;

Time -Stamp.Log(0081); --STP(0081) Status.Update Box end

end UpdateBox;

procedure DisplayDigits(NEXTDATA in out Types.WORD;

STAT STATUSTYPE) is

SUBPROGRAM BODY :Status.Update.DisplayDigits

A procedure which takes the DATAOLD numbers, divides by 10 to get a

--jsingle digit. That digit is used as an index into Shapes.NUMERIC, wh...h

--fholds values to draw that number for Graphics. It updates DATA-OLD in the

--Iprocess.

DIGIT Types.WORD;

STAT_X_LOC Types.COORDINATE;

begin

Time_Starip.Log(OO82); --STP(0082) Status.DisplayDigits start

-Erase previous data

for I in 1 .. Config.statistics_ Length loop

DATAOLD(STAT,I).COLOR :=Graphics.background_coLor;

WORKLIST(Types.WORDINDEX(l)) :=DATAOLD(STAT,I);

end loop;

Time_Stamp.Log(OO83); --STP(0083) Status.Display Digits rendezvous with Graphics(1) start

Graphics.DispLay.Move(MOVE_PRIORITY,WORKLIST);

Time_Stanp.Log(OO84); - ZTP(0084) Status.DispLayDigits rendezvous with Graphics(I) end

-Move new into old, then display

STATXLOC :=base_x;

for I in reverse 1 .. Config.statistics Length loop

-171-

Distributed Issues Final Report

DIGIT :=NEXT-_DATA mod 10; -- get rightmost digit

DATA OLD(STAT,I).OBJECT:= Shapes.NUMERIC(INTEGER(DIGIT));

DATA OLD(STATI).COLOR :=Graphics.status_coLor;

DATA OLD(STAT,I).XY_NEW.X :=STAT_X_LOC;

STAT X LOC :=STATXLOC - Shapesnumber_width- -- moving LeftI
WORK LIST(Types.WORD_ INDEXCI)) :=DATA DLD(STATI);

NEXTDATA :=NEXT-DATA / 10; -- get next digit

end Loop;

TimeStanmp.Log(0085); --STP(0085) Stat';-.Disp~ayDigits rendezvous with Graphics(2) start
Grapihics.Display.MOVE(MOVE_PRIORITY,WORKLIST);

TimeStamp.Log(0086); --STP(0086) Status.DisptayDigits rendezvous with Graphics(2) end

TimeStanmp.Log(0087); --ST'h(0087) Status.DispLayDigits endI

exception

when others =>

DebugIO.PutLine("Exception raised in Status.DisptayDigits'l);I
end Display Digits;

-body of UPDATE task

BeginI
Initialize; -- inside task body call to initialize data structures, et. at.

Loop

Time_Stairp.Log(0114); --STP(0114) Status task start
TimeStamp.Log(0115); --STP(0115) Status accept Signal start

accept Signal;

TimeStarp.Log(0088); --STP(0088) Status accept Signal end

Interrupt Control .Enable;I
beg in - - exception bLock

LOnterruptControL oisabte;

DISPLAY_REQUIRED :=not MODEDISPLAYED;

NEXTMODE :=MODE;

MODEDISPLAYED :=TRUE;I
InterruptCont rol .EnabLe;

if DISPLAY_REQUIRED then -. update new status_box

Update Box(NEXTMODE);

end if;I
for I in STATUSTYPE'first .. STATUSTYPE'last loop

Interrupt_ControL .Disable;

DISPLAY_REQIUIRED :=not STATUS_CONTRDL(I).DISPLAYED;I
NEXTDATA :=STATUS CONTROL(I).DATA;

STATUSCONTROL(I).DISPLAYED :=TRUE;

InterruptControL .EnabLe;

if DISPLAY_REQUIRED then

Display Digi ts(NEXTDATA,');

end if;

end loop;I
InterruptControl .Disable;

REQCOUNT :=REQ_COUINT - 1;

-172-

Distributed Issues Final Report

exit when REQ_COUNT = 0;

InterruptCont rot .Enable;

end toop;

TimeStamp.Log(0089); --$TP(0089) Status task end

exception

when others => Debug_IO.Put_Line("Exception raised in Status task");

end;

end toop;

end UpdateType;

end Status;

-173-

I
Distributed Issues Final Report

-- X UNIT: Sync Package Spec. I
--X Effects: No current use. Wilt provide greater synchronize in futr.--

-- % Modifies: No global data is modified. --

-- Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

-- PACKAGE SPEC : Sync

-- Package Sync contains a time type for use in synchronizing message

-- reception and transferring.

-- Modifications Log

-- 88-11-25 : TEG => Original created.
-- 89-11-22 : MPS => Created the SEQTYPE to keep track of messages across
..'" the net synchronized with respect to time.

with Types;

package Sync is

type SEQ_TYPE is new Types.WORD_INDEX;

end Sync;

I
I
I
I
I
I
I

-174- I

Distributed Issues Final Report

--X UNIT: Target Package Spec.

--X Effects: Provides structure for BDS Target management. --

-- Modifies: No global data is modified. --

--X Requires: No initialization is required. --

--X Raises: No explicitly raised exceptions are propagated. --

-- Engineer: T. Griest.

-- PACKAGE SPEC : Target

Package Target provides target tracking and display management. In

-- addition, it provides the data structures necessary to keep a list

of targets alive. These data bases are accessed in a guaranteed mutually

-- exclusive way, since more than one task accesses the data structures

-- declared here. The TARGET_DATA_TYPE uses a record representation clause

because the number of allowed targets is a relatively large number. This

-- number is defined in the constant Config.max_targets. The clause reduces

-- the number of words necessary from three to one. Although pragma PACK

-- may have also been used to limit the amount of traffic through the

rendezvc is, it would not have been standard (i.e., the bit ordering may

have been different from implementation to implementation).

-- Modifications Log

-- 88-11-12 : TEG => Original created.

with Types;

with Config;

package Target is

track stacksize : constant := 3928;

track-datastacksize : constant := 1506;

subtype TARGETIDTYPE is Types.WORD_INDEX range O..Config.maxtargets;

type TARGETITEMTYPE is record -- provides individual target information

TARGETID : TARGETID_T'fPE;

POSITION : Types.POSITION_TYPE;

TARGETCLASS : Types.TARGETCLASSTYPE;

end record;

type TARGET_LISTTYPE is -- list of all available targets items

array(Types.WORDINDEX range -) of TARGETITEM_TYPE;

type TARGETMSGTYPE is record -- incorlng message from Sensor

NUN_TARGETS : Types.WORDINDEX;

-175-

Distributed Issues Final Report

TARGETLIST TARGETLISTTYPE(Types.TARGET_INDEXTYPE);

end record;

type TARGETSTATUS-TYPE is record

ACTIVE BOOLEAN;

ENGAGED BOOLEAN;

CLASS Types.TARGET_CLASSTYPE;

end record;

for TARGET STATUSTYPE use record

ACTIVE at 0 range 0..0;

ENGAGED at 0 range 1..1;

CLASS at 0 range 2..3;

end record;

type TARGETDATATYPE is record

STATUS TARGETSTATUSTYPE;

POSITIONNEW Types.POSITIONTYPE;

POSITIONOLD Types.POSITION_TYPE;

end record;

type TARGETDATALISTTYPE is -- used to communicate with Rocket.Controt

array(Types.TARGET_INDEXTYPE) of TARGETDATATYPE;

task type TrackType is

entry Start;

pragma PRIORITY(Config.trackpriority);

end Track-Type;

for TrackType'STORAGESIZE use INTEGER(Config.bytes perstorage_unit *

trackstack size);

Track TrackType;

task type TrackDataType is

entry Put(DATA in TARGETDATALISTTYPE; -- put new List

NEXTENGAGE out TARGETIDTYPE; -- get new engagement

NEXTDISENGAGE out TARGET_ID_TYPE); -- and disengagement

entry Get(DATA out TARGETDATALISTTYPE; -- get new list

NEXTENGAGE in TARGETIDTYPE; -- put new engagement

NEXT DISENGAGE in TARGET_ID_TYPE); -- and disengagement

pragma PRIORITY(Config.track_datapriority);

end TrackDataType;

for TrackDataType'STORAGESIZE use INTEGER(Config.bytes_perstorageunit *

track datastack size);

TrackData TrackDataType;

end Target; -- package specification

-176-

Distributed Issues Final Report

--% UNIT: Target Package Body.

--% Effects: Provides structure for BDS Target management.

--X Modifies: No global data is modified. --

--X Requires: No initialization is required. --

-- Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

- PACKAGE BODY : Target

Package Target provides target tracking and display management.

-- Modifications Log

-. 88-12-03 : TEG => Original created.

package body Target is

task body TrackType is separate;

task body TrackDataType is separate;

end Target; -- package body

-177-

I
Distributed Issues Final Report

--% UNIT: TargSup Task Body Subunit. --

--X Effects: Provides Simulator motion control for all targets.

--X Modifies: Modifies TARGETS and TARGET-HISTORY global data. --

--% Requires: No initialization is required. -- I
--X Raises: TARGETCREATEERROR if told to create when max exceeded. --

--% Engineer: M. Sperry.

--

-- TASK BODY : Simulate.Sensor.TargSup

A task which sends a list to the caller describing new targets and

targets which have made it past the bottom border of the BDS and thus are

-- considered to have been destroyed since these targets are no Longer the

concern of the BDS. These targets are described by not being on

the list. Note that new targets are created first and then those

that need to be destroyed are processed. This task is timed so that

the list is ready only during 100 millisecond intervals. In an attempt

-- to generate random numbers, channel two on the timer chip is Lsed.

-- Modifications Log

-- 88-10-25 : MPS => Original created.

-- 89-08-08 : MPS => AlL references to hardware were made to point to HWConfig.

-- 89-11-29 : MPS => Re-structured TargSup to use calls in body of Sensor. |U
with Calendar;

with Debug_10;

with Time-Stamp;

with HWConfig;

with Distrib;

pragma ELABORATE(Calendar, Debug_10, TimeStamp, Distrib);

separate (Simulate.Sensor)

task body TargSupType is I
use Calendar; -- for visibility to

use Types; -- for visibility to "/" etc.

CURRENT NUM OF TARGETS : Types.WORDINDEX; -- local count of targets

TARGETCOUNTER : Types.WORDINDEX; Target index for array

TEMP Types.POSITION_TYPE; -- for fixed compiler bug

START TIME Calendar.TIME;

DELAYPERIOD DURATION;

NEWTARGETID : Types.TARGETINDEXTYPE;

I
-178- I

Distributed Issues Final Report

-- TargSup task body

begin

CURRENT NUM OF TARGETS := 0; -- no targets - yet.

InitiaLize;

-- Take the time.

STARTTIME := Catendar.CLock;

Loop

TimeStamp.Log(O092); --STP(0092) TargSup task start

START-TIME := START-TIME + Config.intervaL;

-- Check number of Targets; if Less than maximum, then add a new

-- Target to the List.

if CURRENTNUMOFTARGETS < Distrib.NUMTARGETS then

NEWTARGETID := GetNewID;

ActivateTarget(NEW_TARGETID); -- initializes TARGETS and TARGETHISTORY

end if;

-- Move each target.

for LO in Types.TARGET_INDEX_TYPE loop

if TARGETS(ID).ACTIVE then

GetNewPosition(ID); -- updates TARGETS(ID).POSITION

end if;

end loop;

-- See if any targets made it to the enemy line.

-- These targets are no Longer the concern of the BDS. They

-- are deleted from the list.

for ID in Types.TARGET_INDEXTYPE Loop

InterruptControl.Disable;

if TARGETS(ID).ACTIVE then

if TARGETS(ID).POSITION.Y c Config.Launchy then

CURRENTNUNOFTARGETS := CURRENTNUMOFTARGETS - 1;

TARGETS(ID).ACTIVE := FALSE;

end if;

end if;

InterruptControl.EnabLe;

end loop;

-- Move the list into the target List kept by the target spec.

Time_Stamp.Log(O093); --STP(0093) TargSup accept NextTargetMsg start

accept NextTarget Msg(DATA : out Target.TARGET MSG TYPE) do

TARGET-COUNTER := 0;

for ID in Types.TARGETINDEX_TYPE loop

-179-

Distributed Issues Final Report

InterruptControl .Disabte;
if TARGETS(ID).ACTIVE then

TARGETCOUNTER :=TARGET_COUNTER + 1;

TEMP :=TARGETS(ID).POSITION; -- fixed compiter code bug

DATA.TARGETLIST(TARGETCOUJNTER).POSITION :=TEMP;I
DATA.TARGET-LIST(TARGET-CONTER).TARGETCLASS :

TARGETS(ID).TARGET_CLASS;

DATA.TARGETLIST(TARGET_COUJNTER).TARGETID :=ID;

end if;
InterruptCant rol.Enable;

end Loop;

-Update number of active targets in the BDS.

CURRENTMUMOFTARGETS :=TARGETCOUNTER;

DATA.NUMTARGETS :=TARGET_COUNTER;

end Next Target Msg;

Time Stamp.Log(OO94); - -STP(OO94) TargSup accept Next_Target_Msg end

-Schedule next List out.

DELAYPERIOD :=STARTTIME - CaLendar.Clock;

if DELAY-PERIOD <0.0 then

START-TIME :=CaLendar.Clock;

end if;

Time Stamp.Log(0095); - -STP(0095) TargSup end

deLay DELAYPERIOD;

end Loop;

accept CLock(Time in Sync.TIME_TYPE); - -TBDI
end TargSup Type;

Distributed Issues Final Report

--X UNIT: Track Task Body Subunit.

--% Effects: Provides all target tracking and display for BDS. --

-- M Modifies: No global data is modified. --

--X Requires: No initialization is required. --

-- % Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.
..

TASK BODY : Target.Track

The TRACK task is used to control all of the target display information.

It accepts data from the Sensor and maintains it for the Rocket.Control

-- task. It is responsible for accepting the information on the targets

and giving that information (in the form of a Graphics.WORKLIST) to

-- the Graphics task. This routine can be contrasted to Rocket.Control which

- performs many simitiar functions for the rockets.

--I Unlike the Rocket.Control task however, there is no intermediate buffer

task which wilt allow for schedule slippage like the one between the

Rocket.Controt and the Simutate.RDL.RockSup task.

There is a timing Loop done in this task since the rest of the system
derives its timing from this task and the Rocket.Controt task. It contains

its own timing mechanism so that if one of the tasks (or possibly another

-- processor) goes down, the entire BDS won't be Locked up.

Modifications Log

-- 88-10-04 : TEG => Orignal created.

with Graphics;

with Shapes;

with Interrupt Control;

with Grid toPixeL;

with Simulate;

with Debug_10;

with Status;

with TimeStamp;

pragma ELABORATE(Graphics,Shapes, InterruptControt,GridtoPixet,

Simulate, Debug_1I, Status, Time_Stamp);

separate (Target)

task body TrackType is

use Types;

package Sensor renames Simulate.Sensor; -- make simulation transparent

use Types; -- for operators only

TARGET MSG : TARGET MSGTYPE;

MOVE-TARGETS : Graphics.MOVELISTTYPE(Types. TARGET INDEXTYPE);

MOVEINDEX Types.WORDINDEX;

-181-

I
Distributed Issues Final Report

DESTROYED Types.WORD;
CREATED Types.WORD;
PIXELPOINT Shapes.PIXEL;

TARGETS TARGETDATALIST_TYPE;

MSGINDEX Types.WORDINDEX;
NEXT-ENGAGED : Types.WORDINDEX; -- 0 if no new engagement

NEXTDISENGAGED : Target.TARGETIDTYPE;-- keep track of disengagements

COLOR : Graphics.COLORTYPE;

ENGAGEFLAG : BOOLEAN;

CLASS : Types.TARGETCLASSTYPE;

POSITION : Types.POSITIONTYPE; -- temp for making changes

ESCAPEDTARGETS : Types.WORD; -- targets which made it past the BDS border

begin

accept Start;

INITIALIZATION

for I in TARGETS'range loop

TARGETS(I).STATUS := (FALSE,FALSE,UNKNOWN); -- init to default
end loop;

Loop I
TimeStamp.Log(O096); --STP(0096) Track task start

TimeStamp.Log(O097); --$TP(0097) Track rendezvous with TargSup start

Sensor.TargSup.NextTargetMsg(TARGETMSG);

TimeStamp.Log(0098); --STP(0098) Track rendezvous with TargSup end

-- Zero out counters

CREATED := 0;

DESTROYED := 0;

ESCAPEDTARGETS := 0;

-- Maintain history information.

-- Go through each target to examine its new status

NSG-INDEX 1;

MOVEINDEX 0;

for TARGETID in TARGETS'RANGE Loop

if TARGETS(TARGET_ ID).STATUS.ACTIVE then

if MSG-INDEX > TARGETMSG.NUMTARGETS or else

TARGETMSG.TARGETLIST(MSGINDEX).TARGETID

/= TARGETID then target destroyed

-- Target has been destroyed, keep local accumulation of destroyed
- targets, and add to list for Display task to erase target.

DESTROYED := DESTROYED + 1;

- If this target has escaped the BDS, count it in the targets which escaped.

-182-

Distributed Issues Final Report

if TARGETS(TARGETID).POSITIONNEW.Y <= Config.launch_y then

ESCAPEDTARGETS := ESCAPED TARGETS + 1;

end if;

-- To mark as inactive : (ACTIVE => FALSE, ENGAGED => FALSE, CLASS => UNKNOWN)

TARGETS(TARGETID).STATUS := (FALSE, FALSE, Types.UNKNOWN);

MOVE-INDEX MOVE-INDEX + 1;

PIXELPOINT GridToPixel(TARGETS(TARGETID).POSITIONNEW);

COLOR := Graphics.background color;

MOVETARGETS(MOVEINDEX) := (PIXEL_POINT,

PIXELPOINT,

Shapes.TARGET,

COLOR);

else -- move the target

-- Found a current existing target in the latest sensor report,

update target information and add it to move List.

POSITION := TARGETMSG.TARGETLIST(MSGINDEX).POSITION;

MOVE INDEX := MOVE-INDEX + 1;

CLASS := TARGETS(TARGETID).STATUS.CLASS;

ENGAGE-FLAG := TARGETS(TARGETID).STATUS.ENGAGED;

COLOR := Graphics.target-coLor(CLASS, ENGAGEFLAG);

MOVETARGETS(MOVEINDEX) :=

(XYOLD => Grid toPixeL(TARGETS(TARGET_ID).POSITION_NEW),

XYNEW => Grid toPixet(POSITION),

OBJECT => Shapes.TARGET,

COLOR => COLOR

TARGETS(TARGET ID).POSITIONOLD TARGETS(TARGETID).POSITION_NEW;

TARGETS(TARGETID).POSITION NEW POSITION;

MSGINDEX MSG_INDEX + 1;

end if; -- new/oLd target check

else -- this target wasn't previously active

if MSG INDEX < TARGETMSG.NUMTARGETS and then

TARGETMSG.TARGETLIST(MSGINDEX).TARGETID

TARGETID then -- new target

New Target has been created, set status and put it on display

CREATED := CREATED + 1;

-- mark as active

TARGETS(TARGET_ID).STATUS

(TRUE, - ACTIVE

FALSE, -- Engaged

TARGETMSG.TARGETLIST(MSG INDEX).TARGET_CLASS); -- class

TARGETS(TARGETID).POSITIONOLD := -- set both old and new

TARGETMSG.TARGETLIST(MSGINDEX).POSITION;

TARGETS(TARGETID).POSITIONNEW :z

-183-

Distributed Issues Finai Report

TARGETMSG.TARGETLIST(MSG_ INDEX).POSITION;

MOVEINDEX :=MOVE_INDEX + 1;

CLASS :=TARGETS(TARGETID).STATUS.CLASS;

ENGAGEFLAG :=TARGETS(TARGEI _ID).STATUS.ENGAGED;

COLOR :=Graphics.targetcolor(CLASS, ENGAGEFLAG);I
MOVE TARGETS(MOVEINDEX) :

(XYOLD => Grid-toPixet(TARGETS(TARGET_ ID).POSITION OLD),

XY NEW => Grid-toPixet(TARGETS(TARGET_ ID).POSITION_NEW),

OBJECT => Shapes.TARGET,

COLOR => COLOR

MSG-INDEX MSG-INDEX + 1;I
end if; -- end of new target check

end if; active check

end Loop;I

Now update status if any created or destroyed

if CREATED /= DESTROYED or DESTROYED >0 then

InterruptControL .Disabie;

Status.STATUS CONTROL(Status.TRACKED) .DATA

Status.STATUS CONTROL(Status.TRACKED).DATA + (CREATED - DESTROYED);I
Status.STATUS C ': TROL(Status.TRACKED).DISPLAYED :=FALSE;

Status.STATUSCONTROL(Status.DESTROYED) .DATA :

Status.STATUSCONTROL(Status.DESTROYED).DATA +I
DESTROYED - ESCAPED-TARGETS;

Status.STATUS-CONTROL(Status.DESTROYED).DISPLAYED :=FALSE;

Status.REQ -COUNT :=Status.REQCOUNT + 1;

if Status.REQ COUNT = 1 thenI
Time Stanmp.Log(0D99); --STP(0099) Track rendezvous with Status start

Status .Update. Signal;

Time Starip.Log(01O0); --$TP(0100) Track rendezvous with Status endU
end if;

InterruptControL .Enable;

end if;

Time Stanp.Log(0101); --STP(O1O1) Track rendezvous with Track-Data start

Target.Track-Data.Put(TARGETS, NEXTE NGAGED,NEXT_DISENGAGED);

-- send copy to Rocket.Controt

TimeStarip.Log(O1O2); --STP(0102) Track rendezvous with TrackData end

if NEXT-ENGAGED >0 then

TARGETS(NEXTENGAGED).STATUS.ENGAGED :=TRUE; -- set engaged

end if;

if NEXT-DISENGAGED ,. 0 then

TARGETS(NEXTDISENGAGED).STATU-.ENGAGED :=FALSE;

end if;

Time Stamp.Log(0103); --$7P(0103) Track rendezvous with Graphics start

Graphics.Disptay.Move(Graphics.LOW, MOVE TARGETS(l..MOVE_INDEX));I
Time Stamp.Log(0104); --STP(0104) Track rendezvous with Graphics end

Time Stanp.Log(0105); - -STP(O105) Track task end

-184-

Distributed Issues Final Report

end toop;

except ion

when others =>

Debug_ O.Put_Line("TRACK termination due to exception.");

end Track_Type;

-185-

I

Distributed Issues Final Report

--% UNIT: TrackData Task Subunit. I
-- % Effects: Provides buffering of target tracking data between the --

Track task and the Control task for rocket engagement. --

-- % Modifies: No globaL data is modified. -

-- % Requires: No initialization is required.

--X Raises: No explicitly raised exceptions are propagated. --

--X Engineer: T. Griest.

TASK BODY : Target.TrackData

The TrackData task is used to buffer the most recent target List

from the Target.Track task and provide it to the Rocket.ControL

task. It also buffers new engagements or disengagements from the

-- Rocket.Control task to notify the Target.Track task that a new target

-- has been engaged or an old target destroyed. I
Note that only one new target can be engaged every update interval.

If the NEXT ENGAGE parameter is 0, this is an invalid TARGET_ID, and

i implies that no new target is engaged.
Although there is a guard used here, it is only used for the first

rendezvous from Rocket.ControL. This helps the BDS system to achieve a

known initial state and asynchronous timing.

-- Modifications Log

88-10-11 : TEG => Original created.

with Time-Stamp;

with InterruptControl;

pragma ELABORATE(TimeStamp, InterruptControt);

separate (Target)

task body TrackDataType is

use Types;

BUFFEREDDATA : Target.TARGETDATA_LIST_TYPE;

BUFFEREDENGAGE : Target.TARGETID TYPE;

BUFFEREDDISENGAGE : Target.TARGET_ ID TYPE;

DATACOUNT : Types.WORD := 0;

begin

-- Initialize local copy of data

-- initialize alt target status to:

-- (ACTIVE => FALSE, ENGAGED => FALSE, CLASS => UNKNOWN)

BUFFEREDENGAGE := 0; -- default is no new engagement

-186-

Distributed Issues Final Report

for I in BUFFERED DATA'range Loop
BUFFERED DATA(I).STATUS :=(FALSE, FALSE, Types.UNKNOWN);

end Loop;

Loop

select

accept Put(DATA :in TARGETDATALISTTYPE;

NEXT-ENGAGE :out TARGETIDTYPE;

NEXT-DISENGAGE :out TARGET-ID-TYPE) do

Time Stamp.Log(0106); - -STP(0106) Trackdat accept Put start

Interrupt Controt.Disable; -- BUGFIX for RTE

BUFFERED-DATA :=DATA;

I nterrupt Control .Enabie;

NEXTENGAGE :=BUFFERED_ENGAGE;

NEXT-DISENGAGE :=BUFFERED-DISENGAGE;

DATA COUNT :=1;

Time Stamp.Log(0107); - -$TP(0107) Trackdat accept Put end

end Put;

or

when DATACOUNT > 0 =>

accept Get(DATA out TARGETDATALIST-TYPE;

NEXT-ENGAGE in TARGETIDTYPE;

NEXTDISENGAGE in TARGETIDTYPE) do

Time Stamp.Log(0108); - -STP(0108) Trackdat accept Get start

Interrupt ControL.Disabte; -- BUGFIX for RTE

DATA :=BUFFERED-DATA;

InterruptCont roL .Enabte;

BUFFEREDENGAGE :=NEXTENGAGE;

BUFFERED-DISENGAGE :=NEXTDISENGAGE;

DATACOUNT :=1;

Time Stamp.Log(0109); --$TP(0109) Trackdat accept Get end

end Get;

end select;

end Loop;

end Track DataType;

-187-

I
Distributed Issues Final Report

--% UNIT: Traject Function Spec. I
--X Effects: Computes rocket motion based on previous motion and -

- -X aimpoints received in guidance messages. --

--X Modifies: No gLobal data is modified. --

-X Requires: No initiaLization is required. --

--X Raises: No expLicitly raised exceptions are propagated. --

--X Engineer: R. Chevier.

" I
--- ---- -----

-- SUBPROGRAM SPEC : Traject

Function Traject takes the current rocket information including the

direction it is headed in and determines the new absolute position

-- of the rocket. This work is done in a three dimensional system.

-- Modifications Log I
-- 88-10-29 : TEG => Original created.

-- 89-08-29 : MPS => Original replaced by R. Chevier's version.

with Types;

package Traject is

procedure GetNewPosition(ROCKETID : Types.WORDINDEX; I
AIMPOINT : Types.AIMPOINT_TYPE;

POS out Types.POSITION_TYPE); I
end Traject;

I
I
I
I
I
I

-188- I

Distributed Issues Final Report

-- UNIT: Traject Function Body.

-- Effects: Computes rocket motion based on previous motion and --

- -X aimpoints received in guidance messages. --

--X Modifies: No global data is modified. --

-- Requires: No initialization is required. --

-- Raises: No explicitly raised exceptions are propagated. --

--X Engineer: R. Chevier

--..

-- SUBPROGRAM BODY : Traject

- - Function Traject: Is the trajectory planner for rockets and takes an

-- Azimuth, Elevation X,Y,Z position and constant velocity and returns a new

rocket position.

-- Modifications Log

-- 88-12-01 : TEG => Original created.

-- 89-08-29 : MPS => RepLaced original with R. Chevier's version.

89-09-07 : MPS => Added the GetNewPosition function

with Config;

with ParameterDataBase;

with Rocket;

with Math;

with Time-Stamp;

pragma ELABORATE(Math);

package body Traject is

use Types; -- fo- operators

use Math; -- for faster fixed math

bam converter : constant Types.LONG FIXED := 182.03125;

type DRIFT_RECORDTYPE is record

SIN_AZIMUTH : Types.LONGFIXED := 0.0;

SIN ELEVATION : Types.LONG FIXED : 0.0;

COS-AZIMUTH : Types.LONGFIXED := 0.0;

COS-ELEVATION : Types.LONGFIXED := 0.0;

end record;

type VELOCITYRECORDTYPE is record

X : Types.LONG FIXED := 0.0;

Y : Types.LONG FIXED := 0.0;

Z : Types.LONG FIXED : 0.0;

end record;

-189-

Distributed Issues Final Report

type LOCALROCKET REC is record

ACTIVE BOOLEAN :=FALSE;

POSITION :Types.POSITIONTYPE;

VELOCITY :VELOCITY RECORDTYPE;

ANGLE Types.AIMPOINTTYPE;

FUEL :Types.LONGFIXED;

end record;

type ROCKET HISTORY REC is record

LOCAL_ROCKET :LOCALROCKET-REC;

GUIDANCE :Rocket.ROCKET GUIDETYPE;

ROCKET-DEFAULTS : Parameter Data Base.ROCKETPARAMETER TYPE;I
DRIFT :DRIFTRECORD-TYPE;

DELTA-T :Typs.RATE-TYPE := Types.RATE_TYPE(Config.intervai);

end record;I

type ROCKET HISTORYARRAY is array(Types.ROCKETINDEX TYPE) of

ROCKET HISTORYREC;

ROCKET-HISTORY : ROCKETHISTORY-ARRAY;

procedure InitiaLizeCINDIVIDUAL ROCKET HISTORY : in out ROCKETHISTORYREC) is

beg in

INDIVIDUAL ROCKET HISTORY.LOCAL ROCKET.ACTIVE :=TRUE;I

INDIVIDUAL ROCKET HISTORY.LOCAL ROCKET.VELOCITY :=(0.0,0.0,0.0);

INDIVIDUAL ROCKET HISTORY.LOCAL ROCKET.ANGLE :~(Config. Launch_azinuth,

Config.Launch_etevation);

INDIVIDUAL ROCKET HISTORY.LOCALROCKET.FUEL :=Parameter -DataBase.c-fueL;I

INDIVIDUALROCKET HISTORY.LOCAL ROCKET.POSITION := (Config.Lanhx

Conf ig. launch y, Conf ig. Launch z);

end Initialize;

procedure TurnRocket

(FUEL in out Types.LONGFIXED;

ROCKET-ANGLE in out Types.BAM;

BDS ANGLE :Types.BAM;

DELTAT :Types.RATETYPE;
TURN-RATE :Types.LONGFIXED;I
TURN BURN RATE :Types.LONG FIXED) is

MAX-TURN :Types.LONGFIXED;

DELTA-ANGLE Types.LONGFIXED;

FUEL-USED :Types.LONGFIXED;

BURN-TIME :Types.LONGFIXED;

SAMS-TURNED :Types.LONGFIXED;
DEGREESTOTURN :Types.LONGFIXED;

begin - -TurnRocketI
TimeStamp.Log(0118); --STP(0118) Traject.Turn Rocket start

DELTA-ANGLE := Types.LONG_FIXED(BDS_ANGLE) - Types.LONGFIXED(ROCKET_ANGLE);

_190-

Distributed Issues Final Report

if DELTA-ANGLE /= 0.0 and FUEL > 0.0 then -- don't turn it if told not to

MAX TURN := DELTAT * TURNRATE;

-- If the rotation in this iteration turns the rocket too far

-- then calculate only the fuel needed to rotate the rocket

-- the required amount.

DEGREES TO TURN := abs DELTA ANGLE / bamconverter;

if DEGREESTOTURN - MAX-TURN then

BURN TIME : abs DEGREES TO TURN / TURN RATE;

FUEL USED : TURNBURN RATE * abs DEGREES_TOTURN;

ROCKET-ANGLE := BDS ANGLE;

--Put("BDS Angle :"); Int_IO.Put(BDSANGLE); New-Line;

--Put("Rocket Angle :"); IntIO.Put(ROCKET ANGLE); New Line;

--Put("Detta Angle :"); LongFxd IO.Put(DELTA ANGLE); New-Line;

--Put("'Turn Rate :"); LongFxd IO.Put(TU:N_RATE); New Line;

--Put("Turn Burn Rate :"); Long Fxd IO.Put(TURN_BURN_RATE);NewLine;

--Put("Burn Time :"); Long Fxd IO.Put(BURNTIME); New_Line;

--Put("CompLeted Turn Fuel:"); Long FxdIO.Put(FUELUSED); NewLine;

else

-- Or if the time step was not large enough for rotation

-- completion then calculate FUEL used and new ANGLE based on

-- rotation coapleted during this step.

FUEL-USED := TURNBURNRATE * MAX-TURN;

if DELTA-ANGLE < 0.0 then -- subtract from current direction

BAMSTURNED MAX-TURN * bamconverter;

ROCKETANGLE := ROCKET ANGLE - Types.BAM(BAMS TURNED);

else -- add to current direction

BAMSTURNED MAX TURN * bamconverter;

ROCKET-ANGLE := ROCKETANGLE + Types.BAM(BAMSTURNED);

end if;

end if;

FUEL := FUEL - FUEL-USED;

if FUEL < 0.0 then

FUEL := 0.0;

end if;

end if;

TimeStamp.Log(0119); --STP(0119) Traject.TurnRocket end

end Turn-Rocket;

procedure Catc_Trajectory

(LOCAL_ROCKET : in out LOCALROCKETREC;

GUIDANCE : Rocket.ROCKETGUIDETYPE;

ROCKET-DEFAULTS : ParameterDataBase.ROCKETPARAMETER TYPE;

DRIFT : DRIFTRECORDTYPE;

DELTAT Types.RATETYPE) is

-191-

Distributed Issues Final Report

drag :constant Types.LONGFIXED :=0.984375;

-roughly 2% of velocity per iteration
gravity :constant Types.LONGFIXED :=9.80665;

VX :Types.LONGFIXED (LOCAL ROCKET.VELOCITY.X);

VY :Types.LONGFIXED (LOCALROCKET.VELOCITY.Y);I
VZ :Types.LONGFIXED (LOCAL_-ROCKET.VELOCITY.Z);

X :Typs.LONGFIXED :=Types.LONG-FIXED(LOCAL-ROCKET.POSITION.X);

Y :Typs.LONGFIXED :=Types.LONGFIXED(LOCALROCKET.POSiTION.Y);

Z :Typs.LONGFIXED :=Types.LONGFIXED(LOCALROCKET.POSITION.Z);
ELEVATION :Types.BAM .Types.BAM(LOCAL-ROCKET.ANGLE.ELEVATION);

AZIMUTH :Types.BAM Types.BAM(LOCAL-ROCKET.ANGLE.AZIMUTH);
FUEL :Types.LONG FIXED LOCALROCKET.FUEL;I
FORWARD-VELOCITY :Types.LONG_FIXED;

THRUST :Types.LONG_FIXED;

TOTALMASS :Types.LONGFIXED;I
DRAG-FORCE :Types.LONGFIXED;

AY,AX,AZ :Types.LONGFIXED;

SINELEVATION :Types.LONGFIXED;

COS-ELEVATION :Types.LONGFIXED;
COS AZIMUTH :Types.LONG_FIXED;

SIN-AZIMUTH :Types.LONGFIXED;

TEMP VAL :Types.LONGFIXED;I

beg in - - Catc Trajectory

Time Stamp.Log(0120); -STP(0120) Traject.Catc Position startI
SIN-ELEVATION Math.Sin(ELEVATION);

SIN-AZIMUTH Math.Sin(AZIMUTH);

COS-ELEVATION Math.Cos(ELEVATION);

COS-AZIMUTH Math.Cos(AZIMUTH);I
TEMP VAL :=VX*VX + VY*VY + VZ*VZ;

FORWARD-VELOCITY :=Math.Sqrt(TEMPVAL);

-Check amount of fuel left.

if FUEL 0.0 then

THRUST 0.0;

else

THRUST ROCKET OEFAULTS.THRUST;

end if;
TOTAL-MASS :=ROCKET DEFAULTS.MASS + FUEL;

- -Put(I"Thrust :11); LongFxd_1O.Put(THRUST); New-Line;

--Put(I'DragForce :'1); LongFxd IO.PUT(DRAGFORCE); New_Line;I
-Put('Cos-ELev :11); Long-Fxd IO.Put(COS ELEVATION); NewLine;

--Put(I'Sin-Az :11); LongFxd IO.Put(SINAZIMUTH); New_Line;

--Put("TotatMass :11); LongFxd IO.Put(TOTALMASS); New_Line;

-- COMPUTE ACCELERATION IN EACH AXIS

DRAG-FORCE :=0.0; -- for now, null out drag accelerationI

AY ((HRUST -DRAG-FORCE) * COS-ELEVATION) * SIN-AZIMUTH;

AY AY / TOTAL-MASS;

-192-

Distributed Issues Final Report

AX ((HRUST -DRAG-FORCE) * COS-ELEVATION) * COS-AZIMUTH;
AX AX / TOTAL-MASS;

AZ (THRUST - DRAG-FORCE) * SIN-ELEVATION;

AZ AZ - TOTAL-MASS * gravity;

AZ AZ / TOTAL MASS;-

-. lose % of velocity per/iteration due to drag

LOCAL ROCKET.VELOCITY.X DELTAT * AX + VX * drag;

LOCALROCKET.VELOCITY.Y DELTAT * AY + VY * drag;

LOCALROCKET.VELOCITY.Z DELTAT * AZ + VZ * drag;

-Update position of rocket

X :=X + DELTA T * LOCALROCKET.VELOCITY.X;

LOCALROCKET.POSITION.X :=X;

Y :=Y + DELTAT * LOCAL ROCKET.VELOCITY.Y;

LOCALROCKET.POSITION.Y: Y

Z :=Z + DELTA T * LOCALROCKET.VELOCITY.Z;

LOCALROCKET.POSITION.Z :=Z;

-- NeWLine;

-- PutLine(" Velocity Acceleration");

-- LongFxd_1O.Put(LOCAL ROCKET .VELOCI TY .X,6,2,O);

-- Long_FxdIO.Put(AX,6,2,O);

-- Put-LineC" X1

-- Long_FxdIO.Put(LOCALROCKET.VELOCITY.Y,6,2,0);

-. Long_Fxd_!O.Put(AY,6,2,0);

-- PutLine(" 1)

-- Long_FxdIO.Put(LOCALROCKET.VELOCITY.Z,6,2,O);

-- Long_FxdIO.Put(AZ,6,2,0);

-- Put-Line(" Zo)

-- NewLine;

-Check for impacts to speed up code

if Z > 0.0 then

-When finished with the calculation update the current mass.

LOCAL ROCKET.FUEL :=FUEL - DELTA T * ROCKETDEFAULTS.BURNRATE;

if LOCAL ROCKET.FUEL < 0.0 then

LOCAL ROCKET.FUEL :=0.0;

end i f;

-Calculate rocket turns.

TurnRocket (LOCALROCKET.FUEL,

LOCALROCKET .ANGLE.ELEVATION,

GUIDANCE.AIMPOINT.ELEVAT IUN,

DELTAT, ROCKETDEFAULTS. TURNRATE,

-193-

Distributed Issues Final Report

ROCKETDEFAULTS.TURN BURNRATE);

Turn-Rocket (LOCALROCKET.FUEL,

LOCALROCKET .ANGLE .AZIMUTH,

GUIDANCE .AIMPOINT .AZIMUTH,

DELTAT, ROCKET -DEFAULTS.TURNRATE,

ROCKET DEFAULTS.TURNBURNRATE);

end if;

rime Stairp.Log(0121); --STP(OI21) Traject.CatcPosition end

end Catc Trajectory;

procedure Get NewPositionCROCKETID Types.WORDINDEX;

AIMPOINT Types.AIMPOINTTYPE;I
P05 out Types.POSITIONTYPE) is

beg in

TimeStamp.Log(011O); --STP(O11O) Traject Start

if not ROCKETHISTORY(ROCKET IO).LOCALROCKET.ACTIVE then

Initiatize(ROCKET_HISTORY(ROCKET ID));

end if;I
ROCKET IISTORY(ROCKETID).GUIDANCE.AIMPOINT :=AIMPOINT;

CatcTrajectory(ROCKETHISTORY(ROCKETID).LOCALROCKET,

ROCKET HISTORY(ROCKET 10) .GUIDANCE,I
ROCKETHISTORY(ROCKET ID) .ROCKETDEFAULTS,

ROCKET HISTORY(ROCKET ID) .DRI FT,

ROCKETHISTORY(ROCKET_ IO).DELTA_T);I

POS :=ROCKETH!STORY(ROCKET ID).LOCALROCKET.POSrtokl;

if ROCKETHISTORY(ROCKET_!O).LOCALROCKET.POSITION.Z <= 0.0 then

ROCKET HISTORY(ROCKET ID).LOCALROCKET.ACTIVE :=FALSE; -- kiLt the rocket

end if;I
Time Stamp.Log(0111); --STP(O111) Traject end

end Get-New-Position;

end Traject;

-194-

Distributed Issues Final Report

--% UNIT: Types Package Spec.

-- x Effects: Provides general purpose data types. --

-- M Modifies: No gLobal data is modified. --

--X Requires: No initialization is required. --

--% Raises: No explicitly raised exceptions are propagated. --

-- % Engineer: T. Griest.
--..

-- PACKAGE SPEC : Types

This package contains all the global types needed for the BDS and the

-- simulator. The type WORD and its derivatives replace the type INTEGER

to increase portability. The type BAN is an acronym for a Binary Angle

Measurement and the transformation from degrees to BAMs is performed by

-- BAMs = 32767/180 * degrees. The BDS and the simulator use three

-- dimensional components and the screen (obviously) display of the event

shows it in two dimensions only.

-- Modifications Log

-- 88-10-10 : TEG => Original created.
-- 89-08-29 : MPS => Added definitions for new rocket flight path equations.

with Config;

package Types is

type WORD is range -32768 .. 32767;
for WORD'size use 16;

type WORD INDEX is range 0 .. 32767;

for WORDINDEX'size use 16;

subtype ROCKETINDEXTYPE is WORDINDEX range 1..Config.max_rockets;
subtype TARGETINDEXTYPE is WORDINDEX range 1..Config.maxtargets;

subtype COORDINATE is Types.WORD;

subtype REL_COORDINATE is Types.WORD;

type METERS is delta 0.125 range -Config.metersinbattLe_area

Config.meters inbattLe_area;

type LONG_FIXED is delta 0.015625 range -33_554_432.0..33_554_431.0;

for LONGFIXED'size use 32;

-- RATETYPE is used to compute velocities and accel accurately (2"*-16)

-195-

Distributed Issues Final Report

type RATETYPE is delta 1.525879E-5 range -32_768.0..32_767.0; I
for RATE TYPE'size use 32;

sqrtLargenuitoer : constant 2508.0; -- approx sqrt(LONGFIXED'last)/4

type POSITION-TYPE is record -- for absolute position

X LONGFIXED; -- assume battlefield oriented ENU

Y : LONGFIXED;

Z : LONGFIXED;

end record;

type BAM is range -32768 .. 32767; -- binary angle measurement 32768/180

-- East North Up origins (0)

type EXTENDEDBAM is new LONG INTEGER; -- for Large calculations

type AIMPOINTTYPE is record

AZIMUTH BAM;

ELEVATION BAM;

end record;

-- T80 - Main Battle Tank

-- SA9 - GASKIN surface to air missle Launcher

-- BMP2 - Infantry Combat Vehicle I
type TARGETCLASSTYPE is (UNKNOWN, T80, SA9, BMP2);

end Types;

I
I
I
I
I
I
I

-196- I

Distributed Issues Final Report

--% UNIT: Distrib Package Body.

PACKAGE BOOY : Distrib

-- OPERATION

This package body makes calls to the runtime in order to obtain

configuration values which are based on the number of availabLe

" processors.
"'I

-- Modifications Log

-- 88-12-05 : TEG => Original Created.

-- 89-12-06 : TEG => Enhanced to support dynamic conlie ration/reconfiguration

-- DISTRIBUTION CONTROL PARAMETERS

package body Distrib is

type BOUND TYPE is (LOW,HIGH);

subtype GUIDERANGE is Types.WORD_INDEX range 1..Oistrib.max_guidetasks;

ROCKETCONFIG : array (GUIDERANGE,GUIDE_RANGEBOUND_TYPE)

of Types.WORD_INDEX :=

-- if 1 task, all rockets on #1

(1 => (1 => (LOW => 1, HIGH => 20), 2 => (LOW => 1, HIGH => 1)),

-- if 2 tasks, 5 rockets on #1, 15 on #2

2 => (1 => (LOW => 1, HIGH => 5), 2 => (LOW => 6, HIGH => 20)));

-- The foLtwing four functions provide configuration information based

-- on operator entered information and system configuration operations.

-- They are provided by the Distributed RunTime Environment

function GetNumRockets return Types.WORD_INDEX;

function GetNum Targets return Types.WORD_INDEX;

function GetNum Guide Tasks return Types.WORD_INDEX;

function GetMasterStatus return BOOLEAN;

-- LATER DECLARATIVE ITEMS (BOOIES)

-- RESTART is used to stop operation of the BDS and allow the operator

-- setup a different configuration. It is only called when the MOOE

-- button is pressed while the RESET button is held down on the mouse.

-- The Ada body version simply Locks up the machine with interrupts disabled.

-197-

Distributed Issues Final Report

pragna INTERFACE(ASM86, GetWNLRGuideTasks);

pragma INTERFACESPELLING(Get Nm nGui deTasks, "D1DRTE?GETTASKS"l);

pragma INTERFACE(ASM86, Get_NuliTargets);

p!3gma INTERFACE SPELLING(GetNuLxTargets, "DlDRTE?GETTARGETS"l);

pragma INTERFACE(ASM86, GetNunRockets);

pragma INTERFACE SPELLING(GetNuiRockets, "D1DTEGETROCKETS');

pragma INTERFACE(ASM86, GetMasterStatus);

pragma INTERFACESPELLING(Ge*_MasterStatus, 'DlDRTE?GETMASTERII);

begin

NUNROCKETS GetNuiiRockets;

NUN TARGETS GetNurnJargets;

NUMGUIDETASKS :=Get Nu1,_GuideTasks;

MASTER :=GetMasterStatus;

for I in Types.WORDINDEX range 1. .NUM_GUIDE_TASKS toop

GuideLow (I) ROCKETCONFIG(NUMGUIDE_TASKS,I,LOW);I

Guide Nigh(I) ROCKET CONFIG(NUMGUIDETASKS,I,HIGH);

end L oop;

end Distrib;I

-198I

Distributed Issues Final Report

12 Appendix B - Distributed Runtime Source Code

The source code for the distributed runtime uses an 8086 family assembly language code. It

is divided into modules which implement the major functional areas. These include:

Initialization and system configuration, interprocessor synchronization, runtime routines,

network setup, network I/O, distributed task control blocks, and the vendor runtime

interface. Two include files: DAHW.ASM and DADEF.ASM are used to define system

constants and data structures.

-199-

I
Distributed Issues Final Report

.XLIST
..... , ,,oo,, E .. ,.,,,

FILE: DADEF.ASM

Distributed Ada - Definitions ;

Definitions for system values

Copyright (C) 1989, LabTek Corporation

DEFVRTIFADDR equ 4000H

DEFaddr size equ 3 # of WORDs in Ethernet Address

NETWORK MESSAGE CONTROL FIELD VALUES

The first 6 fields are constant for ALL network traffic

packet struc

DEFpkt-dest dw 3 dup (?)

OEF pkt_source dw 3 dup (?)

DEFpktlength dw ?

DEFpktsequence dw

DEFypkt_cmd dw ? ; designate type of message

DEF pktTID dw ? ; destinat'-- task id
DEF_pkt_entry_ID dw ?

DEFpktmy_PID dw ? ; source processor ID

DEFpkt myTID dw ; source task ID

DEFpktdata dw ? ; data always starts here

packet ends

Offset from List pointer to next node pointers

DEFnextptr equ 2 ; offset to next pointer in buffer I
DIR_entry struc

DTCB dir locaL dw ? ; Local/distrib runtime flag

DTCB_dir_pid dw ? ; PID for this task

DTCB dirTCB dw ? ; pointer to distrib TCB

DTCB dirCOUNT dw ? ; Counter for task type

DIRentry ends

DTCB dir size equ size DIRENTRY ; size of each entry

TCB Offsets

DEF tcb reply equ 6

DEF returnaddr equ 8 i
DEF numentries equ 12

DEFentrytabte equ 14

Within each TCB is an entry table

The table contains a record for each entry with the following fields:

-200- I

Distributed Issues Final Report

DEFentryrec struc

DEFentryprofite_ptr dw

DEF entry wait dw ?

DEFentryqueue dw ?

dw ?

DEF entry rec ends

CPU Designations

DEFmax_cpus equ 3 ; maximum number of CPUs

DEF aLpha equ 0
DEF bravo equ 1

DEF chartie equ 2

DEF NA equ -1 ; not applicable (no CPU)

PROCESSOR / TASK / ENTRY IDs

Note: PIDs increment by 6,

TIDs and EIDs by 2.

TASK [Os are unique.

COMMANDS received via messages

DEF sync_start equ 0

DEFsync_ready equ 1

DEFsynccontinue equ 2

DEFrequestentry equ 3

DEFrendezvousend equ 4

DEFLocat calt equ 5

DEF ACK equ -1

DEF cold_start equ 6

SYNC PHASE packet retry/delay values

DEF_retry times equ 5

DEFsyncdeLay equ 10 ; some delay between retries

DEFWATCHDOGLIMIT equ 100 ; lOms per count

-201-

I
Distributed Issues Final Report

Parameter Passing convention to runtime network msg routines.

Standard Call Frame for 10_Xmit (This is reverse order of being pushed)

Therefore these values can be used relative to the BP

xmit struc

dw 2 dup(?); reserve space for near return and bp

DEF_P1D dw ; destination processor ID

DEFCMD dw ? ; command for this packet

DEFTID dw ? ; Task for which the command operates

DEFENTRY dw ? ; entry ID for the command (if applicable)

DEFMYTID dw ? ; originating Task ID

DEF PROFILE dw ? ; profile pointer (in CS) for entry parameters

DEFMODE dw ? ; current calling mode (in or out)

DEFPARMLIST dd ? ; pointer (seg/offset) for parameter list i
xmit ends

DEF-xmit-frame equ size xmit ; size of parameter frame

Parameter Constraint Layout

constraint struc

DEF low desc dw ?

DEFhigh_desc dw ?

DEF size desc dw ?

constraint ends

DEF in equ 1 I
DEF out equ 2

DEFinout equ 3 ; bit-wise "or" of "in" & "outso

Parameter Profile Layout

* Number of Parameters *

* PARM1 Mode * • in, out, or inout

* * PARM1 Type/Length * negative if unconstrained, otherwise

t # IS********** *******~ • this is a WORD count

Task Control Brock Layout

TASKID: each block is pointed to by an entry in the

TASK-DIRECTORY which is indexed by the TID. The TID ;

-202- I

Distributed Issues Final Report

is essentially the task's priority (with a provision

for tasks of the same type to have sequentially lower

priority as they are created.

SyncSemaphore: The sync semaphore is used to suspend (or resume)

; execution of the associated task for rendezvous.

Reply Pointer: Contains the buffer descriptor of the reply msg.

Number of Entries: provides the number of entries for this task.

EntryTable: The Entry table provides a record for each of the

entries defined in the task. The record contains:

PROFILEPTR: pointer to the parameter profile

described above.

WAITING : flag indicating that the accepting

task is waitinE for an entry call

for this entry.

Queue : Head of buffer descriptor Linked to

this entry.

.LIST

-203-

Distributed Issues Final Report

.XLIST

FILE: DAHW.ASM

Distributed Ada - Hardware Definition Include FiLe i
Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA

Ethernet Board Hardware Configuration

base equ 310H ; base address of board
vector-number equ 5H ; vector number for board

netmemoryseg equ ODCOOH ; address of ethernet memory

net memorysize equ 2000H ; 8K bytes

LAN Controller Page 0 registers

NICcr equ base + 0; -- control register of NIC

NIC pstart equ base + 1; -- page start register
NIC pstop equ base + 2; -o page stop register
NIC_bndy equ base + 3; -° boundary register

NIC_tpsr equ base + 4; -- transmit page start register

NIC-tbcrO equ base + 5; -- transmit byte count rgtr hi

NIC-tbcrl equ base + 6; -- transmit byte count rgtr to

NICisr equ base + 7; -- interrupt status register

NICrsarO equ base + 8; -- remote start address rgtr to
NIC rsarl equ base + 9; -- remote start address rgtr hi I
NICrbcrO equ base + 10; remote byte count rgtr to

NIC rbcrl equ base + 11; -- remote byte count rgtr hi

NICrcr equ base + 12; -- receive configuration rgtr

NICtcr equ base + 13; -- transmit configuration rgtr

NICdcr equ base + 14; -- data configuration register

NIC imr equ base + 15; -- interrrupt mask register

#I
controller page 1 registers o NIC address setup registers

These registers are written to establish what the actual

physical address wilt be.

physaddress_O equ base + 1; ; physical address registers.

physaddressl equ base + 2; ; These registers are accessed i
physaddress_2 equ base + 3; ; via NIC_cr bits 7,6 = 0,1.

phys address_3 equ base + 4; ; LAN registers are accessed

physaddress_4 equ base + 5; ; via cntrt bits 3,2 = 0,0.

physaddress_5 equ base + 6;

NICcurr equ base + 7; ; only written once during init

Controller Page 2 - Ethernet PROM ADDRESS memory

These Locations contain the "preferred" address as contained 1

-204- I

Distributed Issues Final Report

in PROM. These will typically be copied to the physical

address registers above (page 1).

prom address_0 equ base + 0; station address 0

prom address 1 equ base + 1; -- station address 1

prom address_2 equ base + 2; station address 2

prom-address_3 equ base + 3; station address 3

prom address_4 equ base + 4; station address 4

prom address_5 equ base + 5; station address 5

Gate Array registers (note: offset of 400H)

pstr equ base + 4001; page start register

pspr equ base + 401H; page stop register

dqtr equ base + 402H; -- drq timer register

bcfr equ base + 403H; -- base configuration register

pcfr equ base + 404H; -- prom configuration register

gacfr equ base + 405H; -- ga configuration register

cntr[equ base + 406H; -- gate array (ga) control rgtr

streg equ base + 407H; - ga status register

idcfr equ base + 408N; -- interrupt/DMA cnfgrtn rgtr

damsb equ base + 409H; -- DMA address register hi

datsb equ base + 40A14; -- DMA address register to

vptr2 equ base + 40H; - vector pointer rgtr H2

vptrl equ base + 40CH; - vector pointer rgtr H1

vptrO equ base + 40DH; - vector pointer rgtr #0

rfmsb equ base + 40E; - register file access hi

rftsb equ base + 40FH; register file access to

;* Ethernet (3com) Initialization Values *

eth enabte reset equ 03h ; enable reset

eth disable_reset equ OOh ; disable reset

eth_access_prom equ 04h ; access prom bytes

ethrecvselect equ Oh ; select external Xceiver

ethtan config equ 49h ; 8k of mem-map 1/0, w/interrupts

eth remOMA burst equ 08h ; # of bytes to transfer on DMA burst

ethirq tine equ 80h ; interrupts occur on IRO5

eth rem DMA config equ 20h ; 8k configuration for remote DMA

ethxmit buf start equ 20h ; begin of transmission buffer (OH)

ethrecv bufrstart equ 26h ; receive queue (0600H)

ethrecv buf end equ 40h ; 20 pages, 256 bytes/page (2000H)

eth offset equ 2000h ; difference between page & address

ethrecv_begin equ 600h ; actual offset in RAM seg for begin

ethrecvend equ 2000h ; actual offset in RAM seg for end

ethstart-nic equ 02h ; start NIC

ethnicstop equ 01h ; stop the NIC

-205-

Distributed Issues Final Report

eth-nic DMA config equ 48h local DMA operations, 8 byte bursts
eth remoteDMA-o equ 00h ; DMA remote unused (to)

eth remoteDMAhi equ OOh ; DMA remote unused (hi)

ethpackettypes equ 00h ; receive only good packets

eth nic mode equ 02h ; internal toopback mode

eth bndy start equ 0Oh ; FOR NOW, DO NOT USE BOUNDRY REG!

eth int status equ Offh clear status of all ints at start

eth ints disabled equ OOh ; enable no interrupts

eth_accessjpageO equ OOh ; access page 0 again (for cmd reg)

eth_accesspage l equ 40H ; access NIC page 1 registers

ethexit mode equ OOh ; exit internal loopback mode

nicprx equ 1 ; mask for packet receive interrupt

nicptx equ 2 ; mask for packet transmit interrupt

send equ 4 ; command byte to start transmission

Interrupt Controller Commands

NET_EOI equ 60H + vector_number ; -- End Of Interrupt (specific)

TIMER_EOI equ 60H + 0 ; timer is interrupt channel 0

Ethernet controller routine specifications

#I
Ethnet_Init initializes a 3com Ethertink 1I board to transmit and receive

packets via a memory mapped interface with the board Located at DCOO:0000.

The base address from which the registers are located is 310h. The init

routine intiaLizes the memory to zeroes before it completes. Although no

DMA is used to transfer the data from main memory to the board's memory

(which is referred as remote DMA operations), there is no choice but to

use the local DMA operations (transferring bytes or words from the board's

;memory to the board's output fifo's).

.LIST

-206-

Distributed Issues Final Report

page 55,132

TITLE RTE - Distribted Ada Runtime Module

FILE: DA_RTE.ASM

RTE - DISTRIBUTED Ada RUNTIME MODULE

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA

Runtime Code to implement prototype Distributed Ada Services

This module implements the remote rendezvous operations to

support distributed Ada.

Currently provided are:

Remote-Entry, Remote Setect, RemoteAccept, RemoteEndAccept,

Remote_EtabStart, Remote_ELab_-Wait, Remote_ELabContinue.

Local _EndAccept

Ver Date Description

0.1 Nov-88 Initial prototype

0.2 Dec-89 Version 2 - Flexible task distribution Added

.model large

public Initialize

These are entry points called by the vendor runtime interface to

invoke the runtime by generated code

public RequestEntry, ActivateConpLete, Accept, RendezvousComplete

public Select, Create-Task

The 10 module invokes the runtime services when messages are received

via the NETRECEIVE call

public NETReceive ; called by 10

Vendor Runtime Services

extrn VRTIFInit:near

extrn VRTIFWait:far ; Vendor Supplied P Semaphore operation

extrn VRTIFSignal I:far ; Vendor Supplied V operation/interrupt

extrn VRTIF_Signal:far ; Vendor Supplied V operation

After or instead of using the distributed runtime, control may be

passed bact to the vendor runtime through this interface

-207-

I
Distributed Issues Final Report

extrn VRTIFCreateTask:near

extrn VRTIF_ActivateComptete:near
extrn VRTIFEntry:near

extrn VRTIFRendezvousComplete:near

extrn VRTIF Accept:near

extrn VRTIFSelect:near
extrn VRTIFLowerPriority:near

Vendor task control block information and runtime data segment address

extrn VRTIF tcbtid:abs ; offset to priority within vendor TCB
extrn VRTIF-taskyptr:word ; offset to current TCB with runtime DS

extrn VRTIF_DS:word ; offset within user DS to runtime DS

extrn VRTIFSELECTREC:abs ; number of bytes per "select record" I
extrn Sync:near ; call synchronize

extrn ShutDown:near ; restart system on "COLD_START"

extrn TASK DIRECTORY:word

Network 10 Services
extrn TX READY:near ; Transmit ready semaphore
extrn 10XMIT:near ; Start transmission routine

extrn 10_NetworkInit:near

extrn I0 ALLOCATE:near ; allocate a buffer

extrn IODEALLOCATE:near ; dealLocate a buffer

extrn PID:word ; THIS processor ID

extrn SYNCHROSEMAPHORE:word I
extrn CONTINUESEMAPHORE:word

extrn Outchr:near ; for debugging only

include DADEF.ASM ; system definitions

cseg segment common

assume cs:cseg,ds:cseg,es:cseg

org 1400H

Initialize -- no parameters

Initialize:

call 10_NetworkInit

call VRTIF init

ret

; Prior to each Create Task, synchronize all CPU's to keep elaboration

; going sequenciatty

-208- I

Distributed Issues Final Report

CreateTask:

push ds

push ax

S fmov aL,'cC

call Outchr U

mov ax,cs

mov ds,ax

calt Sync ; do synchronization

pop ax

pop ds

imp VRTIFCreateTask ; return to vendor runtime

; A task has compteted activation and catted "ACTIVATED". Since there

; are no parameters, simply nest the call to the vendor runtime so it

; wilt return here when done. First, provide a unique ID based on

; priority for each task. Then we see if the task should remain

; ative. If not, suspend it on a dummy semaphore

Activate CompLete:

push bp

mov bp,sp

push ax

push bx

push cx

push dx

push si

push di

push ds

push es

mov ds,[VRTIF_DS]

mov si,[VRTIF TASK PTR]

mov cx,[si+VRTIFTCBTID] ; get priority (of this task type)

; During Activation all tasks have the priority of their task type, however

; since the priority is used to identify tasks, and possibly serveraL tasks

wilt be of the same task type, count the tasks of each task type and

assign them a unique priority. (note the initial priorities must be

assigned with sufficient space so that this has no effect on scheduling).

Decreasing Ada priorities have increasing VRT priority (by two).

mov di,cx

add di,di , mutt by four to make index

add di,di

Modifying count for base task is atomic action

pushf

cli

-209-

I
Distributed Issues Final Report

mov ax,cs:TASKDIRECTORY.DTCB dirCount[di]; get # of tasks for type

add word ptr cs:TASK_DIRECTORY.DTCB dirCountdi],2 ; adjust it for next

popf

or ax,ax ; see if delta on this priority

jz ACTCOMPLETElO ; if so skip changing of pririty

add cx,ax ; compute new priority

push cx ; save priority

calt VRTIFLowerPriority ; setpriority lower cx=priority si=V-TCB

pOp di

add di ,di

add di,di

ACTCOMPLETElO:

mov ax,cs ; set DRT data segment

mov ds,ax

mov bxTASK_DIRECTORY.DTCB dir TCB[di] ; get DRT TCB

Lea bxDEF_returnaddr[bx] ; point to return addr

mov di,[bp+2] ; get return address offset

mov [bxJ,di ; save in TCB

mov di, [bp,4] ; get return address segment U
mov [bx+2] ,di

pop es

pop ds

pop di

pop si

pop dx

pop cx

pop bx

pop ax

pop bp

add sp,4 ; trash return address (saved in TCB)

push cs ; simuLate a FAR caLl I
catl VRTIFActivatecomplete

sub sp,4 ; make room for return address I
push bp

mov bp,sp

push ax

push bx

push cx

push dx ;'out" affects this

push si

push di

push ds

push es

mav ds,CVRTIFDS] ; get Vendor runtime data segment

-210- I

Distributed Issues Final Report

mov si,[VRTIF_TASKPTR] ; fetch Current Task TCB

mov bx,[si+VRTIFTCBTID] ; get priority (our task type)

mov ax,cs ; Load DRT data segment

mav ds,ax

add bx,bx ; mutt by four to make index

add bx,bx

mov ax,TASK_DIRECTORY.DTCBdir pid(bx]; fetch PID for this task

cmp ax,[PID] ; see if this is the processor

jz Keep alive

If here, this task should not continue to run... suspend it.

pushf ; this must be atomic
cti

xor ax,ax ; init a dummy semaphore

mov (DUMMY_SEMI ax

mov (DUMMYSEM+2],ax

mov [DUMMYSEM+4] ax

push cs

tea ax,DUMMY_SEM

push ax

call VRTIFWait go to steep forever

popf

int 3 if here... ERROR!

This task should be allowed to Live, let it continue

Keep aLive:

mov si,TASKDIRECTORY.DTCBdirTCB[bx] ; fetch TCB

Lea si,DEFreturnaddr[si]

mov ax,[si] fetch offset

mov [bp+21,ax put on stack

mov ax, [si+2] fetch segment

mav [bp+4],ax

pOp es

pop ds

pop di

POP si

pop dx

pOp cx

pop bx

pop ax

pop bp

retf

Programrs wilt come here when they want to do an entry call. If

the call is to a task with remote calters, we must go through the

distributed runtime, otherwise go to Local runtime.

-211-

Distributed Issues Final Report

Input parameters:
;ES:DX points to Parameter List

BX task id to call

CX entry id to call

Request_Entry:

push ds ; save for vendor runtime

mov ds,[VRTIFDS] ; fetch local runtime data segment

mov ,i,Cbx+VRTIF_tcbtid] ; get distributed task id (priority)

mov ax,si ; save task id

mov di,[VRTIFTASKPTRI ; get vendor TC6 of current task

mov di,[di+VRTIF_tcbtid] ; fetch distrib. tid of current task

pop ds ; restore ds

add sisi ; mult by four to make index

add sisi

test cs:TASKDIRECTORY[si],OFFFFH ; see if local or remote

jnz Dist Entry ; if entry must be done by distributed runtime

This ertry is strickty local, let vendor runtime handle it

imp VRTIFEntry ; go to vendor runtime

This entry must be handled by the distributed ru, ie, cOeLK to see if

the called task is on this processor.

Dist_Entry:

; push ax

mov aL,'r'

S calL Outchr

; pop ax

mov sics:TASK_DIRECTORY.DTCBdirpid[si] ; fetch PID of called task

cmp si,cs:[PID] ; compare against my PID

jnz Remote-Entry

imp Local_Entry , do Local if the same

RemoteEntry

Send "RequestEntry" message with copied parameters and profile

Wait on EntryWaitSemaphore

Copy OUT parameters

Release Buffer

IN PARAMETERS:

AX distributed task id to call
CX entry id to call
DI distributed task ID of this caller task

ES:DX points to Parameter List I

-212- I

Distributed Issues Final Report

NOTE: Stack Parameters are removed by caLLer

REParmList equ -4 ; dword

REProfile equ -6 ; parameter profile ptr

RECount equ -8 ; parameter count

RETCB equ -10 ; dist. TCB of server

RETID equ -12 ; Distrib. Task ID of caller

REBUFFDESC equ -14 ; descriptor of reply buffer

REBUFFPTR equ -16 ; address to packet data

RemoteEntry:

push ax

mov aL,'R'

call Outchr

; pop ax

push bp

mov bp,sp

add sp,RE_BUFF_PTR Local parameters to save

push ds ; save caller's DS

push cs

pop ds l Load DRT data segment

mov [bp+RETID],di ; save task id of caller

mov [bp+RE_Parmlist+2],es ; save segment of parameter List

mov [bp+RE_Parm_ ist],dx ; save offset of parameter list

Build call frame to transmit ertry call to designated task

* PARMLIST

push es ; push segment of parameter list

push dx ; push offset of parameter list

mov dx,DEFin ; calling Xmit for IN mode

MODE

push dx

mov bx,cx ; get entry id

add bx,bx ; muLt by two

add bx,bx ; mutt by four

add bx,bx ; mutt by eight (8 bytes per entry descriptor)

mov si,ax ; get destination TID in SI

add sisi ; mutt by four to make index

add sisi

mov si,Task_Directory.DTCB dir TCB[si] ; fetch dist. TCB

mov [bp+RE_TCB],si ; save for later

mov dx,DEFEntryTabLe+DEFentryprofiLe_ptr[si+bx] ;profile offset

mov [bp+RE_ProfiLe],dx ; save for later

PROFILE

push dx ; push as parameter

TID of Source

push di

ENTRY

push cx ; push entry id

-213-

Distributed Issues Final Report

TID of Destination

push ax ; push (DA) task id

CMD for remote entry call

mov di,DEFrequest_entry

push di

PID of Destination

mov di,ax ; get back TID of dest.

add di,di ; mutt by four to make index

add di,di

mov diTask_Directory.DTCB dirPID[di] ; fetch PID

push di ; push PID

call 10Xmit ; parameters are copied by xmit

Now wait for rendezvous Complete to wake up

mov si,[bp+RETID] ; get my dist TID

add sisi

add sisi

mov siTask_Directory.DTCB dirTCB(si ; fetch my dist. TCB

push cs

push si ; base of DA TCB is semaphc-e

call VRTIFWait ; go to sleep waiting for end rendezvous

Copy out parameters back. Use the TCB definitions

to determine how many parameters, their size, and what type (e. must

allow for unconstrained arrays).

First get address of buffer and stick it in local

mov si,[bp+RETID) ; get my dist TID

add sisi

add sisi

mov siTask_Directory.DTCB dir TCB(si] ; fetch dist. TCB

mov si,DEF_TCBRepty[si] ; get reply buffer descriptor

mov [bp+REBUFFDESC],si ; save it for later deallocation

mov si,[si] ; get actuil buffer address

lea si,DEFpktdata(si] ; point directly to data

mov [bp+REBUFF_PTR],si ; save pointer

mcv si,[bp+REProfile) ; get parameter profile ptr

ctd ; make sure auto increment

lodsw ; get number of parameters

R_Entry_10:

or ax,ax ; see if done

jnz REntry_12 ; continue if not done

jmp R_Entry_30 if done

R_Entry 12:

mov bp+RECOUNT],ax ; update parameter count

-214-

Distributed Issues Final Report

todsw ; get parameter Mode

mov cx,[si] ; fetch parameter type/length

add si,2 ; skip over type/Length

mov Ebp+RE_PROFILE],si ; update profiLc pointer for next

Ids si,[bp+REj armlist] ; point to parameter list

note: vendor puts segment/offset in reverse of normal order

push dataseg~si] ; segment of data

push dataoff[si] ; offset of data

or cx,cx ; see if unconstrained type

jge REntry_15

; process an unconstrained object as a parameter. Note, the

; descriptor is always copied, so we mnust skip 3 words in buffer

; and over two in the parameter List

push [si+4] ; descriptor segment

push [si+6] ; offset of descriptor

add si,8

mov word ptr [bp+REparm-list],si ; update parameter list index

mov si,[bp+REBUFF_PTR] ; adjust buffer pointer over constraint

add si,6 ; skip over constraint

mov [bp+RE_BUFF_PTR],si ; update

pop si ; get offset of descriptor

pop ds ; get segment of descriptor

push ax ; save MODE of parameter

mov cx,[si+DEF Low desc] ; get tow bound of constraint

mov ax,[si+DEF_hlgh_desc] ; get high bound of constraint

mov dx,[si+DEFsizedesc] ; get size of object

Copy the parameter data iff MODE is correct and array is not nult

mov bx,cs ; reload DRT data segment

mov ds,bx

pop bx ; get mode of parameter

pop di , get offset of data

pop es , get segment of data

and bx,DEF out ; see if we should copy data

jz REntry_20 ; if not, go on

sub ax,cx , compute difference in range

inc ax , adjust to include end points
mul dx ; compute size in words

jLe REntry_20 ; if array is empty go to next parm

mov cxax ; put in count register

mov si,[bp.REBUFFPTR]

rep movsw ; transfer from packet buffer

mav [bp+RE_BUFF_PTR],si ; update pointer

jmp REntry_20 ; go on to next parameter

Constrained parameter, CX is length in bytes, copy it into packet buffer

-215-

I
Distributed Issues Final Report

R_Entry 15:

add si,4 ; move to next object address

mov word ptr bp+DEFparm-list],si ; update parameter list index

pop di ; get data offset I
pop es ; get parameter data segment

and ax,DEFout ; see if mode is right to copy out

mov ax,cs ; restore distrib. data segment

mov dsax

jz REntry_20 ; skip copy of data if not out mode

mov si,[bp.RE BUFFPTR] ; get buffer pointer in DS:SI

inc cx ; round odd bytes up when convert

shr cx,1 ; to words

rep movsw

mov [bp+REBUFFPTR],si ; update current packet buffer ptr

R_Entry_20:

mov si,[bp+REProfite] ; get next parameter profile

mov ax,[bp+RECount] ; get the counter back in ax

dec ax ; count down

jmp REntry_10

; Free buffer, restore stack, and return to entry caller

; (it restores DS and any any stack frame it may have built)

R_Entry 30:

mcv bx,[bp+REBUFF DESC] get reply buffer descriptor back

call 10DeatLocate ; return used buffer

pop ds ; restore caller's data segment

mov sp,bp ; daLtLocate Locals

pop bp

retf

Local_Entry : This routine is called for an entry of a task

which is Local (same processor) as the caller

Inputs:

AX : TID of called task

BX : Vendor TCB of called task
CX Entry ID

DX offset to parmeter list

ES segment of parameter list

si : PID of called task

di :MYTID

Although the task is Local to the caller, an 10 buffer is allocated

to store the necessary pointers required by accepting tasks. This

is later deattocated as part of the LocaL _endaccept routine. The

calling task is always suspended, and if the accepting task is "waiting"

it is signaled to wake up.

-216-

Distributed Issues Final Report

Only the TID EID and MYTID fields within the buffer are valid during

local rendezvous. Also, the data fields have the address of the

various objects/desciptors rather than the data itself.

NOTE: There is no need to deallocate the buffer allocated here because

it is deallocated by the server task. (There is only one

buffer used by local tasks, rather than two as for remote tasks.)

LE_ENTRY_PTR equ -2 ; word: bp offset to current entry table

LETCBPTR equ -4 ; word: bp offset to target TCB base

LE MYTCB equ -6 ; word: bp offset to my TCB base

Local_Entry:

push ax

mov al,'L'

; call Outchr

* pop ax

push bp

mov bp,sp

add sp,LE MY TCB allocate space for Locals

push ds ; save caller's data segment

push cs t load DRT data segment

pop ds

push ax ; save TID

call 10 Allocate get a buffer descriptor ptr in BX

pop ax

mov si,[BX] * fetch buffer address

currently only one parameter is used (either in or out). Take advantage

of this to simplify interface to accepting task. The address of the

data area is provided in the first part of the buffer. NOTE: this address

is backwards (segment=low address, offset=high address).

push ax

push di

mov di,dx

mov ax,es:[di] ; transfer parm List to buffer

mov [si],ax ; buffer so as to point to the

mav ax,es:[di+2] ; data and descriptors actually

mov [si+2],ax ; processor

mov ax,es:[di+4]

mov [si+41,ax

mov ax,es:[di+6]

mov (si+6],ax

pop di

pop ax

mov DEFpkttid(si],ax ; put in called task TID

mov DEFpktmytid[si],di and put in calling task id there

-217-

1

Distributed Issues Final Report

mov DEFpktcmdsi],DEFLocat_call ; indicate this is a local call

add di,di ; mul by four

add di,di

mov diTASKDIRECTORY.DTCB dir_TCS[di] ; get my TCB addr

mov [bp+LEMYTCB],di ; save it I
mov [si+DEFpkt Entry ID],CX ; save entry id

mov si,ax ; get TID of called task into si

add sisi ; mutt by four
add sisi

mov ax,TASKDIRECTORY.DTCddirTCB~si] ; fetch dist. TCB addr

mov [bp+LETCBPTR],ax ; save base of TCB

mov si,cx ; conute entry table address

add sisi ; * 2

add sisi ; * 4

add sisi ; * 8

add si,ax ; add base uf (DA) TCB

add si,DefEntry tabLe

mov [bp+LEEntryPTR],si ; save

Lea siDEF_Entry Queue[si] ; fetch entry queue head

ATOMIC action follows... Queue entry, if waiting signal acceptor

pushf

cli

call INSERT ; place buffer descriptor on entry 0

mov si,[bptLEEntry PTR] fetch entry table address again

test DEFEntryWait[si],OFFFFH ; see if WAITING

jz LeO20 ; go on if not

server is waiting on accept, signal it

mo si,[bp+LE TCBPTR] ; get task Control Block

mov cx,DEFnLuientries[si] ; get number of entries

lea siDEF_entry tablelsi] ; point to base of table
I eO 10:I

mov DEF_Entry_Wait[si],O ; clear (all) waiting flags

add si,size DEFEntryRec ; go to next entry record

loop leOlO 1

push cs ; segment of semaphore

mov ax,[bp+LE TCBPTR] ; offset of semaphore
push ax

call VRTIFSignal ; wake up server (may preempt ourselves)

NOTE: This is the end of the atomic region (above Vendor runtime call

reenables interrupts!

LeO20:

popf ; restore interrupt Level

push cs ; now try to suspend ourselves

-218- I

Distributed Issues Final Report

mov ax,[bp+LEMYTCB] ; semaphore is first thing in TCB

push ax

call VRTIF Wait may not suspend if server is higher

priority and has already signaled us!

np ds ; restore DS

mov spbp ; remove locals

pop bp

retf

Accept - is invoked by the generated code to wait for arrival of

a caller.

INPUTS:

AX is entry to accept

OUTPUTS:

ES:BX is parameter list pointer

Accept:
push ds

mov ds,[VRTIFDS] ; get runtime data segment

mov si,[VRTIFTASK PTR]

mov si,VRTIF_tcbtid[si] ; fetch my TO

pop ds

add sisi ; mutt by four to make index

add sisi

test cs:TASKDIRECTORY.DTCB dirLOCAL[si],OFFFFH ; distributed?

jnz Dist-Accept ; must to a distributed accept

jn VRTIFAccept ; otherwise, return to vendor runtime

Distributed Accept (TASKID, ENTRY ID) return ES:BX ParamPointer

NOTE: THIS HANDLES BOTH ACCEPTANCE FOR LOCAL AND REMOTE CALLS

; THROUGH THE DISTRIBUTED RUNTIME.

Simple Accept, see if someone on entry queue, if so

return with pointer to buffer in ES:BX, otherwise set

"Waiting" Flag and go to sleep on semaphore.

Inputs: TASKID, ENTRY_ID

Outputs: Returns ES:BX pointing to Parameter Data List

* Also, Buffer descriptor is placed in "Reply" pointer.

RATCB equ -2 ; word: my TCB

RAENTRY equ -4 ; word: this entry

-219-

I
Distributed Issues Final Report

DistAccept:

push ax

myov al,'a'

call Outchr ;@

pop ax

push bp

mov bp,sp

sub sp,
4

push ds ; save old data segment
push cs ; Load data segment

pop ds

mov siTASK_DIRECTORY.DTCB dirTCB~si] ; fetch TCB ptr

mov [bp+RATCB],si ; save it

mov bx,ax ; compute entry index

add bxbx 2I
add bx,bx *

add bx,bx * 8 (eight bytes per entry)

tea bx,DEFentry_tabLe[si+bx] ; point to my entry of interest

mov [bp+RAENTRY],bx ; save it too

pushf ; save interrupt status

cli ; go atomic

test DEFentryQueue+2[bx],OFFFFH ; if Zero, then queue is empty I
jnz RA010 ; if caller is there, take it!

No caller on entry queue. Set waiting flag and go to sLeep

mov [bx+OEFentrywait],l ; set flag

push cs ; push segment of my task semaphore

push si ; address of my tcb

call VRTIFWAIT ; go to steep waiting for caller

NOTE after vendor runtime call - interrupts are enabled!

Now Something is on the queue, provide address of parameter List in

ES:BX and return to caller.

RA010:

popf ; restore interrupt status

mov si,[bp+RATCB] ; get TCB pointer back

mov bx,(bp+RAENTRY] ; get the entry address back

note: the wait flag is cleared by the caller

mov bx,DEFentryqueue+2[bx] ; get buffer descriptor from queue

mov DEF-tcb-repy[si],bx ; save descriptor for end rendezvous

mov bx,[bx] ; fetch buffer address into BX (return)

mov ax,cs ; get segment into ES, making ES:BX pair

mov es,ax ; parameter list is in buffer

; It has been put there by either the

; Local or remote entry call mechanisms

pop ds ; restore data segment

mov sp,bp ; remove locals

pop bp -

-220- I

Distributed Issues Final Report

retf

; Select -

INPUTS:

STACK frame has open alternatives. As best as we can

tell, it looks like this:

[flags I

; entry # I

; (unknown I

Each alternative appears to have three words with the

"flags" word being not-zero. If it is zero, this indicates

the end of the List.

OUTPUTS:

ALL input parameters are removed from the stack and replaced

the parameter list pointer and a selector which indicates

; which alternative was selected.

SELECTLIST equ 6 ; offset from bp to open alternatives

FLAGS equ 0 ; offset to flags withing List record

ENTRYID equ 2 ; offset to ID# within list record

Select:

push ds

mov ds,[VRTIF_DS] ; get runtime data segment

mov si,[VRTIF TASKPTRI

mov si,VRTIF_tcbtid[si] ; fetch my TID

pop ds

add si,si ; muLt by four to make index

add si,si

test cs:TASKDIRECTORY.DTCB-dir Local[si],OFFFFH ; distributed?

jnz DistSeLect ; must to a distributed select

imp VRTIFSetect ; otherwise, return to vendor runtime

aeus,,utuuus,,,u uu,,eeuua#ug uuugu,,uu,#,eeeeeue~eeeus,,u##u,,es * us,,,,;,;

; Dist SeLect

Check to see if any of the entries have callers. If not,

set the "Waiting" Flag in each of them, and go to sLeep.

If one entry has a queued request, accept it and return

offset for "Case" table and parameter list pointer on the stack

The offset for the case table is the entry id + 1.

INPUTS: Index into TASKDIRECTORY is in SI

DS_TCB equ -2 ; word: my TCB

DS_ENTRY equ -4 ; word: this entry

DSALTER equ -6

Dist SeLect:

-221-

Distributed Issues Final Report

mov aLs'

caLL Outchr

push bp

mov bp,sp
add sp,DS_ALTER ; atlocate Local storage
push ds ; save DS

mov axcs

mov ds,ax ; set to Distr. runtime data segment

mov si,TASKDIRECTORY.DTCB dirTCB[si] ; fetch TCB ptr

mav [bp+DS_TCB],si ; save it

ENTER CRITICAL REGION (cannot allow task to go on an entry queue

after we have checked it, but before setting waiting flag.

pushf
cti

First check each entry to see if any has a caller...

Go through all open alternatives

RemSe[O0: ; will come back here after resume

lea ax,[bp+ .- LIST] ; get address of entry List

mov [bp+P A _R],ax ; save in local variable

RemSetlO:

mov x,[bp+DSALTER] ; get pointer
test SS:FLAGStbx],OffffH ; test if end of the List

jz Rem Se[15 ; did not find it

nov ax,SS:ENTRYID[bx] ; get entry ID

mov bx,ax ; compute entry index

add bx,bx ;* 2

add bx,bx * 4

add bx,bx * 8 (eight bytes per entry)

lea bxDEF_entry table[si+bx] ; point to entry of interest

test DEF entry_queue+2[bx],OFFFFH ; if Zero, then queue is empty

inz Rem_Se50 ; if caller is there, take it!

add word ptr [bp+DSALTER],VRTIF SELECTREC ; bytes per record

imp Rem_SelO ; loop till end of list

all of the Entry Queues are Empty, mark each Waiting flag

and go to sleep.

R ea ax,[bp+SELECTLIST] ; get address of entry lisI

mov [bp+DSALTER],ax ; save in local variable

RemSeL20:

mov bx,[bp+DS_ALTER] ; get pointer

test SS:FLAGS[bx],OffffH ; test if end of the list

jz Rem SeL30 ; done
mov ax,SS:ENTRY ID[bx] ; get entry ID
mov bx,ax ; compute entry index

add bx,bx * 2

-222-

Distributed Issues Final Report

add bx,bx 4

add bx,bx * 8 (eight bytes per entry)

tea bx,DEF entry tabLe~si+bx] ; point to entry of interest

mov DEFentry wait[bx],1 ; set waiting

add word ptr [bp+DSALTER],VRTIF_SELECTREC

jmp RemSe120 Loop till end of list

The following runtime call will suspend this task, when it

resumes, the interrupt flag will be set again, and presumably,

one of the entries wiLtL have a caller queued.

RemSel3O:

push cs ; push segment of wait semaphore

push [bp+DS_TCB] ; push offset of wait_semaphore taskid

call VRTIFWait ; do wait on semaphore

Now clear aLL the waiting flags

cti

Lea ax,[bp+SELECT LIST] ; get address of entry list

mav [bp+DSALTER],ax ; save in local variable

RemSel40:

mov bx,[bp+DS ALTER] ; get pointer

test SS:FLAGS[bx],OffffH ; test if end of the List

jz Rem Sel45 ; done

mov ax,SS:ENTRYID[bx] ; get entry ID

mov bx,ax ; compute entry index

add bx,bx * 2

add bx,bx * 4

add bx,bx * 8 (eight bytes per entry)

Lea bx,DEFentry table[si+bx] ; point to entry of interest

mov DEFentrywait[bx],O ; clear waiting

add word ptr [bp+DS_ALTER],VRTIFSELECTREC

imp RemSe140 ; loop tilt end of List

RemSe145:

imp Rem SeLO0 ; go back and find caller

There is a caller on this entry queue, do start accept

Fetch the Caller's buffer, which has a (backward) pointer to

the parameter data

RemSet50:

popf ; no longer critical

mav si,DEFentryqueue+2[bx] ; fetch buffer descriptor

mov di,[bp+DSTCB] ; get base of my TCB back

mov DEF tcb repty[di],si ; put buff descriptor into reply ptr

mov si,[si] ; get actual buffer (which is parm List)

inc ax ; make entry id # compatible with VRTIF

-223-

Distributed Issues Final Report

Now pull parameters off of stack, and replace with parm-list ptr and

case selector

pop ds ; get DS back

mov sp,bp ; start with all locals

POP bp ; get back saved bp

pop bx ; get return offset

pop cx ; get return segment

Go thru open alternative List, removing three words per entry

RemSel60:

pop dx ; get ENTRY flag ??

or dx,dx ; zero?

jz RemSeL70 ; if zero, this is end of List

POP dx ; remove this alternative

POP dx

jmp RemSe160 I
RemSeL70:

push cs ; segment of parm list ptr

push si ; offset of parm List (buffer)

push ax ; selector for case

push cx ; put return segment back on

push bx ; and return offset

retf ; and leave

This is called by the generated code to indicate end of an accept body.

When the rendezvous complete call is made, determine if the caLLer was

on my processor. If not, use the Remote end accept, otherwise use the

Local end accept I
Inputs:

No user inputs, only the REPLY pointer

provides information regarding the responding task.

Rendezvous-Complete:

push ds

mav ds,[VRTIFDS] ; get runtime data segment I
mv si,[VRTIFTASKPTR]

mov si,VRTIF_tcbtid[si] ; fetch my TDI

pop ds

add sisi ; muLt b four to make index

add sisi

test cs:TASK_DIRECTORY.DTCB dirLOCAL(si],OFFFFH ; distributed?

jnz DistEndAccept ; must to a distributed accept

imp VRTIFRendezvousConmlete ; otherwise, return to vendor runtime

i

-224-

Distributed Issues Final Report

Distributed End Accept -
Reply ptr has got the buffer descriptor, use it to determine

if call was Local or remote

DEAENTRY equ -2 ;Local word for entry pointer

DistEndAccept:

mov at,'e'

; call Outchr @@

push bp

mov bp,sp

sub sp,2 ; local data

push ds ; save previous DS

push cs l Load data segment

pop ds

mov si,TASK_DIRECTORY.DTCB dir TCB[si] ; fetch TCB of my task

mov di,DEF tcb repty[si] fetch buffer descriptor

mov di,[di]

mov ax,DEFpktentryid(di] ; fetch Entry id

mov bx,ax

add bx,bx ;mult by 2

add bx,bx ; * 4

add bx,bx * 8

lea bx,DEFentry table(si+bx] ; point to entry

mov [bp+DEA_ENTRY],bx ; save entry record ptr

tea bx,DEFentry queue[bx] ; point to entry queue

call REMOVE ; pulL entry off queue BX now @ buffer

cmp DEFpktcmd[di],DEF_ LocaL_caLL ; see if this is local

jz Local EndAccept

Send output parameters to caller.

Release buffer used to hold input (and output for now) parameters.

INPUT: SI is my TCB address

DI points to buffer used for this rendezvous

; BX points to buffer descriptor

NOTE: Stack frame is already build for local parameters

RemoteEnd Accept:

mov at,'R'

call Outchr

push bx ; save buffer descriptor

Build stack for XMIT

PARM LIST PTR

-225-

I
Distributed Issues Final Report

push cs ; segment of buffer

push di ; first part of buffer is parm list

; MOOE

mov ax,DEFout out mode

push ax

PROFILE

mov bx,[bp+DEAENTRY] get base of this entry

mov bx,DEFentryprofiLe_ptr[bx] ; fetch prorite

push bx

MYTID

mov ax,[di+DEFpkt_TID] This task was the origniat TID

punh ax

ENTRY

mOV ax[di+DEF-pkt-entryID]

TD push
ax

;TID

mov di,[di+DEF pktMYTID] ; get caller's task ID

push di

;CMD

mov axDEF_rendezvousend

push ax
PlD I

add di,di ; mult TID by four to make index

add di,di

mov ax,TASKDIRECTORY.DTCB-dirpid[di] ; fetch PID

push ax

call 10Xmit transmit reply

Now we are done with the received buffer, release it

pOp bx get descriptor ptr back

call 10_DealLocate ; release buffer, descriptor in BX

pop ds restore DS

mov sp,bpPOP bpI

retf

LocalEndAccept

Allow caller to continue (Note: this is for entry calls with parameters

that are all passed by reference. No copy-back is required).

AlL entries whether remote or Local use a buffer, therefore deaLLocate

it when complete.

INPUT: SI is this task's TCB address

DI points to buffer used for this rendezvous

BX points to buffer descriptor

NOTE: Stack frame is already build for Local parameters

-226- I

Distributed Issues Final Report

Local End Accept:

Now wake up caller

mov aL,'L'

call Outch-

mov si,DEFpktmytid[di] ; get TID of calLer

call 10_Deallocate ; done with buffer deallocate @ BX

add sisi ; mult by four to make index

add sisi

mov si,TASK_DIRECTORY.DTCB dirTCB[si] ; get TCB of caller

push cs ; push segment of semaphore

push si ; push calling Task's TCB (SEMAPHORE)

call VRTIFSignaL ; signal task to continue

pop ds ; restore DS

mav sp,bp

pop bp

retf

.............................. ,, I, D...

NetReceive - processes an incoming message

This routine is called by the interrupt handler (in;

the 10 Module) to initiate action based on the

receipt of a packet. When the service handler is

catled, BX contains the address of the buffer

descriptor.

NetReceive:

mov si,[bx] ; get address of actual buffer

mov di,[si+DEFpkt_cmd] fetch command

or di,di ; do range check

is NetReceiveError

cmp di,command_limit

jg NetReceiveError

sht di,1 ; r-ke command into word index

imp vector[di]

NetReceive Error:

mov al,'$'

call Outchr

calL 10_deatlocate ; trash message

ret

The following vector table implements the 'case' statement

on the message ACTION Field

vector label word

dw offset Sync Start

dw offset Sync-Ready

-227-

I
Distributed Issues Final Report

dw offset Sync-Continue
dw offset EntryCall
dw offset RendezvousEnd

dw offset ShutDown COLD START

vectorend label word

command-limit equ (vectorend - vector) / 2 - 1

Future versions of the vector table will include

* BeginRemoveEntry

EndRemove Entry

Begin-Abort

; End-Abort

; Begin-Terminate

; End-Terminate

SharedVariableRequest

etc.

This code section is executed upon receipt of a message initiating

a Begin-Elaborate request. 8X points to buffer descriptor.

NOTE: THIS IS ONLY RECIEVED BY SLAVES!

SyncStart:

cal(1OOeal(ocate ; no need for buffer

push cs ; wait up slave

lea ax,SYNCHROSEMAPHORE
push ax
call VRTIF_SignaLI ; signal task to continue

ret

; This code section is executed upon receipt of a message initiating

; an End_Elaborate. This message implies that the specified elaboration has

; been completed on the remote processor and elaboration can continue

; on the primary processor.

INPUTS: BX points to buffer descriptor.

NOTE: THIS IS ONLY RECEIVED BY THE MASTER

Sync_Ready:

call 10_Dealtocate ; no need for buffer

push cs ; wait up slave

,ea axSYNCHROSEMAPHORE

push ax

call VRTIF_SignaLI ; signal task to continue

ret

-228- I

Distributed Issues Final Report

SyncContinue: Executed when a "synccontinue" message arrives..

NOTE: ONLY RECEIVED BY SLAVES, half way through syncrhonization

Sync_Continue:

call 10 Deallocate ; no need for buffer

push cs ; wait up slave

Lea ax,CONTINUE_SEMAPHORE

push ax

call VRTIF_Signatl I ; signal task to continue

ret

; This code section is executed upon receipt of a message initiating

; an entry call

Place buffer on Entry queue, If "Waiting" for that entry is TRUE,

then clear all Waiting FLags and signal Wait Semaphore.

INPUTS:

BX = Buffer descriptor pointer

SI = Buffer pointer

This code assumes only a single parameter (simplification for prototype)

NOTE: pointers to data and descriptors are stored backward

from normal InteL OFFSET,SEGMENT format

typelen equ 4 ; offset to type/Len field in profile

data seg equ 0 ; position w'.hin buffer for ptr to data

dataoff equ 2

desc_seg equ 4 ; position within buffer for ptr to desc

descoff equ 6

true-data equ 6 ; offset for data (after descriptor)

EntryCall:

mov dx,bx ; save buffer descriptor

mov bx,[si+DEF pkttid] ; get task id

add bx,bx ; mult by four to make index

add bx,bx

mov bx,TASK 1IRECTORY.DTCB dirTCB[bx] ; get task control block

mov ax,(si+DEFpkt EntryID]; fetch entry id

mov di,ax ; compute entry offset

add di,di ; mutt times 2

add di,di ; times 4

add di,di ; times 8

Lea di,DEF_entry_table[di+bx] ; point to current entry

push di

currently only one parameter is used (either in or out). Take advantage

-229-

I
Distributed Issues Final Report

of this to simplify interface to accepting task. The address of the

data area is provided in the first part of the buffer. NOTE: this address
; is backwards (segment=low address, offset=high address).

mov diDEF_entryProfilePtrfdi] ; point to parameter profile

test [di+typelen],OFFFFH ; see if constrained

pop di ; restore entry pointer

ins Entry_010 ; go on if constrained I

; Parameter is unconstrained, first pointer is to data, second to descriptor

; The data will actually be offset by six (6) bytes to leave room for a

; descriptor in front of the packet data.

mov dataseg(si],cs ; stuff cs of buffer

lea ax,DEF pktdata+truedata(sil ; address of true data I
mov data off(si],ax ; put in packet

mov descseg[siJ,cs ; segment of descriptor

lea ax,DEF pkt Tdata[sil ; offset of descriptor I
mov desc off[si],ax

imp Entry_020

Handle simple case of constrained array

Entry_010:

mov data seg[si],cs ; stuff cs of buffer

tea ax,DEFpktdata~si] ; address of data

mov data off[si],ax

ATOMIC action follows... Queue entry, if waiting signal acceptor

Entry_020:

xchg bx,dx ; bx := buffer; dx := TCB_base

Lea si,DEFentryqueue(di] ; si points to entry queue

pushf

cli

call INSERT ; place buffer descriptor on entry Q

mov cx,DEF entrywait[dil ; get entry WAITING flag

or cx,cx ; test waiting flag

jz Entry 040 ; go on if not

server is waiting on accept, clear all waiting flags and signal it

mov si,dx ; get TCB

mov cx,OEFnumlentries[sil

Entry_030:

mav DEFentrytable+DEF_entry wait[si],O ; clear wait flag

add si,size DEF_entry_rec ; go to next entry

loop Entry_030

push cs ; segment of semaphore

push dx ; offset of semaphore (first in TCB)

-230-

Distributed Issues Final Report

call VRTIF_SignalI ; wake up server

Entry_040:

popf ; restore interrupt level

ret ; return to interrupt handler

.. ..I , ~~,,,,I S SI i 1 55 5 ,.,. ,.S5 S5#S 5D .. lD

; RendezvousEnd -

; This code section is executed upon receipt of a message completing

; an accept body (end rendezvous)

Post buffer containing Out Parameters and signal task to wake up

; INPUTS:

BX = Buffer descriptor pointer

SI = Buffer Pointer

RendezvousEnd:

mov si,si+DEFypkt-tid] ; fetch task id of caller

add sisi ; mutt by four to make index

add sisi

mov si,TASK_DIRECTORY.DTCB dir TCB[si] ; fetch task control block

mov (si+OEFTCBREPLY],bx ; provide caller with reply buffer

push cs ; push segment of caller semaphore

push si ; push offset of same (TCB)

call VRTIFSignalI ; wake up caller

ret ; to finish interrupt

REMOVE - Remove Entry that is on entry queue

Inputs: BX points to entry Q

Output: BX points to buffer descriptor that was dequeued

ALL other registers are preserved

REMOVE:

push ax

push si

do list operation as atomic action

pushf
cli

mov si,[BX+DEFNEXTPTR] ; fetch buffer descriptor

mov ax,[si+DEFNEXTPTR] ; get next buffer

-231-

Distributed Issues Final Report

mov [BX+DEF NEXTPTRI,ax ; update queue head

popf

mov bx,si return pointer in BX

pop si

pop ax

ret

INSERT - INSERT Entry onto the end of an entry queue

Inputs: SI points to entry 0

BX points to buffer descriptor

Outputs: SI points to Last entry on 0

ALl other registers are preserved

INSERT:

push ax

do List operation as atomic action

pushf

cH

INSERT10:

mov ax,[si+DEF_nextptr] get next buffer on entry queue

or ax,ax see if end of list

jz INSERT20 ; end of List, go insert it

this is not end of List, keep searching

mov siax

imp INSERT1O

found spot on List, insert it

INSERT20:

mov [si+OEF-nextptr],bx ; put on end of List

popf ; restore interrupt flag

pop ax

ret

align 4

DUMMYSEM dw 3 dup (?) ; dummy semaphore for making zombie tasks

cseg ends

end

-232-

Distributed Issues Final Report

THIS PAGE INTENTIONALLY LEFT BLANK.

-233-

m
Distributed Issues Final Report 5

page 55,132

TITLE IO - Distributed Ada Network 10

FILE: DA_IO.ASM

10 MOOULE - Low Level Network Functions

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA

The 10 module provides the lowlevel interface to the network

hardware and receive message buffering.

This code is loaded into all processors, and adapts to the

the network hardware in its host. Which routines are used is

determined solely by the calls made from the application code U
and the messages received.

The 10 interface is implempnted as four separate functions:

Initialize

Transmit

Receive

Interrupt Procesing

; The initialize function obviously must be called prior to any

other, and establishes the interrupt vector and enables, as

; well as prepares the hardware for use. It is also responsible

; for initilizing data structures used to buffer incoming packets.

; The Transmit function is used by one task at a time, and is

; guarded by a semaphore to provide mutual exclusion. Once the

; transmit resource is granted, the data is copied into the on-card;

; buffer and sent out via hardware commands. (Normally, hardware I
; packet acknowledge should be provided, however Ethernet does not

; support this, so we have implemented an acknowledge with time-oit;

; protocol that provides network error detection. Note that

; acknowtedement packets take priority over regular traffic.

; Currently, no re-try is supported, however it would be a rather ;

; simple matter of keeping a transmit buffer queue and retransmit ;
; on errors. The more serious problem is how to insure real-time ;
; performance in the presence of multiple retries. Obviously the ;

retry count would have to be programmable (and possibly time

sensitive. If an acknowledgment times-out, a reconfiguration

operation is executed to recover the system in a reduced state. U
The Receive function is provided to assist in transferring the

data to the requested destination. It clears the outstanding I
acknowledgement request.

The Interrupt Processing handles both transmit complete and

reception interrupts. For transmit complete, the resource is

simply made available again by performing a V operation on the ;

-234- I

Distributed Issues Final Report

; trasmit semaphore. For Receive interrupts, a buffer is allocated;

; from a Linked List of fixed sized buffers. Then the incoming

; data is copied to the buffer and the distributed runtime is

; invoked to process the request. It may simply post the fact the

message has arrived (and queue to an entry), or it may cause a

task to resume which involves signalling (V - operation) the

suspended task.

Refer to individual procedure headers for parameter information

and calling requirements.

Ver Date Description

0.1 Nov-88 Initial prototype

0.2 Dec-89 Added Packet AcknowLedge/Error Detection, and

allowed for system restart (compiler initialized

data is restricted to a WARMSTART flag.)

0.3 Feb-90 Greatly improved multi-packet processing and

interrupt handling.

.model large

include DA DEF.ASM ; contains software definitions

include DAHW.ASM ; contains hardware specifics

public 10 NetworkInt, IOXmit

public TXREADY ; semaphore

public 10 ALLOCATE, 1O_DEALLOCATE

public Ack Check

public outchr , for debug

public RECEIVEFLAG ; for sync phase TO

extrn VRTIF_Signat_I:far ; signaL semaphore

extrn VRTIFWait:fer ; wait on semaphore "P"

extrn VRTIF_18259:abs ; address of 8259

extrn VRTIF vectorbase:abs ; base of vector table

extrn VRTIF timstamp:far ; time stamping routine

extrn Setup:near ; Initialize Network I/F

extrn NETReceive:near ; part of runtime code

extrn ShutDown:near if network ack failure

extrn COLDSTART:word ; NZ if this is first pass thru

extrn SYNCPHASE:word determines operational phase

extrn NETTABLE:byte ; provides network addresses

extrn PID:word ; THIS processor's ID #

extrn TASKDIRECTORY:word ; (DTCB) table of tasks

extrn WATCHDOG:word ; (DTCB) table of watch dog timers

extrn WATCHLIST:word ; (DTCB) list of processors to watch

-235-

I
Distributed Issues Final Report

software support buffers

buff-size equ 2048 ; bytes in local buffer

numbuff equ 20 ; number of buffers

minpacket equ 64 ; minimum number of bytes in a packet

cseg segment common

org 2800H ; makes Listings eaiser to use!

assume cs:cseg,ds:cseg,es:cseg ; ,ss:sseg

NETWORK_INIT : load Interrupt Vector and clear pointers

10_NetworkInit:

push ax

push bx

push cx

push dx

push ds

Do Low level Network Interface Card Initialization

caLL Setup

init network variables

mov [SEQUENCE), 0 zero out sequnce counter

mov ax,cs

mov ds,ax

mov [RECEIVEPTR],eth_recv_begin ; receive pointer

mov (TXREADY],I ; init semaphore

mov TXREADY+2,0

mov [TX READY+4],0

mov [RECEIVEFLAG],O ; init flag

Initialize Receive buffer List

tea ax,RXBUFFQ I
mov [RXBUFFHEAD],ax

tea ax,RXBUFFER ; points to actual buffers

mov cxnumbuff ; number to link

tea bx,RXBUFFQ ; points to buffer descriptors

Init30:

mov [bx],ax ; put in current buffer pointer

Lea dx,[bx+4] ; DX is address of next descriptor

mov [bx+2],dx ; put it in as next pointer

-236- I

Distributed Issues Final Report

add ax,buffsize ; point AX at next buffer

mov bx,dx change descriptor pointer to next

Loop Init3O

now fix up last pointer

mov word ptr [bx-2],O ; terminate List

Initialize Outstanding Acknowledgements lists

xor ax,ax ; indicate none outstanding

nov LiCK PENDING],ax

mov [ACKHOLDINGJ,ax ; or waiting to be xmitted

Lea si,ACK_RECORDS ; all acks are free

mov [ACKFREE],si

mov cx,numbuff-1 ; number to Link (same as number of buffers)

]nit40:

Lea dx,[si+ack_size]; DX is address of next descriptor

mov [si],dx ; put it in as next pointer

mov si,dx ; change descriptor pointer to next

loop Init4O

fix up last pointer

mov word ptr (si],O ; terminate List

load interrupt vector if this is a cold start

test word ptr]COLD START],OFFFFH

jz WarmStart

mov ax,0

mov ds,ax

mov bx,VRTiF_vector base+(vector number*4)

mov ax,offset InterruptHandler

mov Lox],ax

mov ax,cs

mov [bx+2],ax

Note: Preliminary board initialization was done in SETUP code, now

just enable interrupts

Warm-Start:

mov dx,VRTIF_18259+1

in aL,dx ; get interrupt mask

mav ah,OFEH ; mask to clear zero bit

mav cL,vector_number ; load shift count register

rot ah,cL

and at,ah , enable Level

out dx,aL , update controller chip

-237-

Distributed Issues Final Report

mov dx,niccr ; command register

mov al,ethaccess_page_O ; access NIC page 0 registers

out dx,aL

mov dx,nic imr ; interrupt mask register

mov aL,nicprx+nic-ptx ; enable xmit/recv interrupts

out dx,at

pop ds

pop dx

pop cx

pop bx

POP ax

ret

routine for debugging only - all registers preserved

Prints character in AL

outchr:

push dx

push ax

mov dx,3fdh

out10:

in aL,dx

and aL,20h

jz outlo

pop ax

mov dx,3f8h

out dx,aL

pop dx

ret

headersize equ 10 ;words:dst=3,src=3,RCP=l,priority=l,seq=l,tength=1

rcpoffset equ 12 ; bytes to receive control pointer

.. .. ,, . .. gI.tgI ,g g ,g ,I,

XM[T - transmit the message specified by parameter list

; starting at address is at SS:bp+DEFPARM_LIST

NO GENERAL REGISTERS ARE PRESEVED

NOTE: During system synchonization this routine works

differently so as to avoid use to the vendor runtime and

provide more control to the appptication (no ack timeout);

This is designated by the boolean "SYNCPHASE" I
.... ,,,.,......... I, uu............

INPUTS:

PID ; destination processor ID

CMD ; command for this packet

TID ; Task for which the command operates

-238- 'I

Distributed Issues Final Report

ENTRY ; entry ID for the command (if applicable)

MY_TID ; originating Task ID

PROFILE ; profile pointer (in CS) for entry parameters

MODE ; current calling mode (in or out)

PARM_LIST ; pointer (seg/offset) for parameter list

10_Xmit:

push bp

mov bp,sp ; mark stack

test [SYNC_PHASE],OFFFFH ; see if in sync phase, if so, don't use rts

jnz Xmit_05

Normally, we use vendor runtime to lock xmitter

push cs ; push segment of transmit ctrL semaphore

Lea ax,TX_READY

push ax ; push offset of semaphore

call VRTIFWait ; do p semaphore operation

Now get acknowledge request buffer

call Ack_Allocate ; returns ack buffer ptr in BX ;AAA

imp Xmit_08

But During SYNCPHASE we simply Lock with a clear

Xmit 05:

mov (TXREADY],O ; set it not busy, set by Interrupt rtn

Xmit_08:

put header in packet buffer

cLd set auto increment

Les di,[CARD_RAM] point to hardware buffer area

mov si,[bp+DEFPIDI fetch Destination Task PID

mov cl,3 ; mutt by 8 (bytes/address entry)

shL si,cl ; index into address table

Lea si,NET_TABLE[si] fetch address of dest.

mov cx,DEF_addr_size in words

rep movsw ; copy in dest address

mov si,[PID] ; get our processor id

mov cl,3 ; muLt by 8 (bytes/address entry)

shl si,cl index into address table

lea si,NET_TABLE[si] fetch our address

mov cx,DEFaddrsize

rep movsw ; copy in source addr

skip over length field for now

add di,2

Update Sequence Number and put it in packet and acknowledge entry

-239-

I

Distributed Issues Final Report

mov ax,[SEQUENCE] ; get sequence number
inc ax

stosw ; put in packet

mov [SEQUENCE],ax ; update

test [SYNCPHASE],OFFFFH ; see if in sync phase

jnz Xmit_09

nov [bx+ACKSEQI,ax ; put it in outstanding requests ;AAA

call AckAdd ; add this ack entry to the pending list ;AAA

Xmit 09:

mov ax,[bp+DEFCMD] ; get packet command

stosw ; put in buffer

mov ax,[bp+DEFTID] ; get Destination TID

stosw I

mov ax,[bp+DEFENTRY] ; if entry applies

stosw

mov ax,[PID] ; fetch my processor ID

stosw

mov ax,[bp+DEF MYTID] ; get my task ID

stosw I

; copy the parameters into the packet buffer. Use the TCB .definitions

; to determine how many parameters, their size, and what type (ie. must

; allow for unconstrained arrays).

mov si,[bp+DEFProfile] ; get parameter profile ptr

Xmit_10:Lodsw ; get number of parameters

or ax,ax ; see if done

jz Xmit_30 ; if done

mov [XPARMCOUNT],ax update parameter count I
mov ax,[si] ; get parameter Mode

mov cx,[si+2] ; fetch parameter type/Length

add si,4

mov [PROFILEPTRJ,si ; save profile pointer

Lds si,[bp+DEFparmtist] ; point to parameter list

push [si] ; segment of data

push [si+2] ; offset of data

or cx,cx see if unconstrained type

jge Xmit_15

process an unconstrained object as a parameter, always copy descriptor

push [si+4] ; desrriptor segment

push [si+6] ; offset of descriptor
add si,8
mov word ptr bp+DEFparm-List],si ; update parameter list index

pop si ; get offset of descriptor

-240- I

Distributed Issues Final Report

pop ds ; get segment of descriptor

push ax , save MOOE of parameter

mov cx,[si+DEFLow desc] ; get low bound of constraint

mov es:[di],cx ; put in packet

add di,2

mov ax,[si+DEFhighdesc] ; get high bound of constraint

stosw ; put in packet

mov dx,[si+DEFsize-desc] ; get size of object

mov es:[di],dx ; put in packet

add di,2

Copy the parameter data iff MOOE is correct and array is not null

pop bx ; get mode of parameter

pop si ; get offset of data

pop ds ; get segment of data

and bx,[bp+DEF_MOOE] ; see if we should copy data

jz Xmit_20 ; if not, go on

sub ax,cx ; compute difference in range

inc ax ; adjust to include end points

jte Xmit 20 ; if array is empty go to next parm

mul dx ; compute size in words (descriptor)

mov cx,ax ; put in count register

rep movsw ; transfer to packet buffer

imp Xmit_20 ; go on to next parameter

Constrained parameter, CX is Length in words, copy it into packet buffer

Xmit_15:

add si,4 ; move to next object address

mov word ptr [bp+DEFparm-list],si ; update parameter list index

pop si , get data offset

pop ds ; get data segment

and ax,[bp+DEFMOOE] ; see if mode is right

jz Xmit 20 ; skip copy of data if not

inc cx , round up to nearest word count

shr cx,1 , by adding one and divide by two

rep movsw

Xmit_20:

mov ax,cs , restore data segment

mov ds,ax

mov si,[PROFILE_PTR] ; get next parameter profile

mov ax,[XPARM_COUNT] ; get the counter back in ax

dec ax ; count down

imp Xmit_10

; Setup NIC registers to begin transmission

; Must prevent a RECEIVE interrupt from arriving, which would interfere

with the registers being updated for Transmission.

-241-

Distributed Issues Final Report

load start address of packet

Xmit_30:
pushf

; save interrupt status

cLi ; disable any interrupts

mov dxniccr ; select Page 0

mov atethaccess Page_O

out dx,aL

mov dx,nictpsr ; page start register

mov alethxmit buf start ; transmit page at DCO0:0000

out dx,al

Load length of packet i
mov ax,di ; save current packet pointer

Les di,[CARD_RAM] ; point to hardware buffer area

sub ax,di ; subtract base to get size in bytes

add di,DEFpkt_tength ; add offset to data Length field

stosw ; stick in PACKET length

cmp axmin_packet ; make sure it is at least minimum

ige Xmit 40

mov ax,minpacket

Xmit 40:

mov dxnictbcrO ; Load number to transfer into H/W

out dx,al

mov dxnictbcrl

mov al,ah

out dx,al

start transmit

mov dx,niccr

mov al,send ; command to initiate transmission I
out dx,al

papf ; restore interrupt status

pOp bp ; restore bp

ret 18 ; return and remove stack frame

INTERRUPT SERVICE ROUTINE

Currently, this must have a stack frame similar to other vendor

interrupt routines so that the interrupt-mode Signal routine will

be able to find the interrupt return address and status

InterruptHandler label far

push bp

mov bp,sp

push ax

-242-

i

Distributed Issues Final Report

push bx

push cx
push dx

push si

push di

push ds

push es

; First keep interrupt request Line from triggering during processing

; of interrupts (and clearing interrupt bits)

ctd ; for all string operations

mov dx,nic_cr ; select PageO

mov at,eth accessPageO

out dx,at

mov dx,nicimr ; interrupt mask register

mov at,eth_intsdisabted ; disable all interrupt requests

out dx,al

Process any packet receptions

NOTE: since this is done inside the interrupt routine, interrupts

are disabled, and therefore there is no interference from other

interrupts is expected (especially clock interrupts).

Careful attention to race conditions is necessary to prevent a received

buffer from not getting processed and interrupts getting lost

Receive:

point DS:SI to packet in hardware buffer

Ids si,cs:[CARD_RAM] ; source is ethernet RAM

add si,cs:[RECEIVEPTR]; add current receive buffer page address

mov ax,[si] ; fetch status into AL, NEXT PTR into AH

; since we only receive good packets ignore stat

or al,at ; see if any packet arrived (if not zero!)

jnz RECV100 ; go on if data is there

jimp End Receive ; otherwise, Leave the receive section

;SSS;

;SSS; No data Left, go ahead and clear receive interrupt

;SSS; RACE CONDITION HERE...

;SSS mov dx,nicisr ; clear any pending receive interrupts

;SSS mov at,nicprx ; receive interrupt bit

;SSS out dx,al ; clear receive interrupt (if present)

;$SS;

;SSS; put in little delay, then make sure nothing just arrived..

;SSS;

;$$$ mov ax,1O

;SSSRECVO20:

;SSS dec ax

-243-

I
Distributed Issues Final Report

;$$$ jnz RECVO2O

;$$ mov al,[si] ; see if something has arrived

;SSS or al,at

;SS$ jz RECVO3O ; if nothing, good... no worries

;S$$; something did just arrive, see if we will see the interrupt U
;SSS in aL,dx ; fetch interrupt status now

;$$ and al,nicprx ; see if a receive interrupt was shut off

;$$S jz RECVO40 ; if we lost the interrupt go sound alarm

;SSSRECV030:

;SS$ imp Check Xmit

;S$$;

;SSS; We shut off a receive interrupt by accident
;$$$;

;SSSRECV04O:

;$$$ mov at,7 @@@ print bell

;$$$ call outc.r

;$$$ mov aL ' ' • visible evidence

;$$$ imp CheckXmit

;$$S

RECV100: ; @ check for non recieve ok ptr

cii al, ; is it a one?

jz RECV101

mov aL,7 ; @ print bell

call outchr

mov aL,'?' ; if non-zero print something special

call outchr

RECV1O1:

xor at,at ; zero Low byte, Leaving a new pointer

sub axethoffset ; correct for memory vs page offset

mov cs:[RECEIVEPTR],ax ; get ready for next reception

add si,4 ; skip over receive header (status/page, count)

SI njw points to first part of transmitted packet

First check to see if it is an ACK message

mov ax, [si+DEFpkt_crnd] ; check message type

or ax,ax ; command is negative for Acks

ins RECV1O5 ; if regular packet, go on I
It is an ACK message. Clear it from pending List and free up buffer I

mov byte ptr [si-4],0 ; clear status flag for next time

call ACKREMOVE ; check off the ack

jimp ENDRECEIVE ; all done with one packet

Received a real message, first reload watchdog timer for the source PID

RECVI05:

mov di,[si+DEF_pkt mypid] ; get source processor ID

add di,di -

-244- I

Distributed Issues Final Report

mov cs:WATCHDOG[di],DEFWATCHDOGLIMIT

; ALlocate a buffer, and transfer data to the buffer

; after the following call, the buffer descriptor is in BX. DO NOT DESTROY BX!

mov ax,cs ; destination segment is CS

mov es,ax

call 10 Allocate ; destination offset is buffer header in BX

mov di,cs:[bx] ; get address of buffer in DI

mov ax,[si+DEF-pktlength] ; get size of valid packet in bytes

inc ax ; make sure we get odd packets

shr ax,1 ; convert to words

; Now transfer memory from hardware buffer pages to software buffer.

; Note that the buffer will wrap around at 4000H back to 2600.

; ALso, the first word of each page is cleared after the data is removed

; so that received packets can easily be detected. (Since the header bytes

; are the Last thing written, you are guaranteed that the whole packet has

been received.)

mov dx,80H-2 ; page size in words (reduced to get aligned)

RECV110:

cmp ax,dx ; see if more than a page

jge RECV120

mov dx,ax ; otherwize only move the remaining words

RECV120:

mov cx,dx

rep movsw ; do the transfer

push si

dec si ; make sure we are in page just processed

and si,OFFOOH ; backup to its beginning

mov byte ptr [si],O ; and clear status byte for next time

POP si

cmp si,eth_recv_end ; see if at end of hardware buffer

jnz RECV130

mov si,ethrecvbegin; reset pointer to begin

RECV130:

sub ax,dx ; reduce total count by those moved

jz RECV140 ; finished if so

mov dx,80H ; keep page alignment

jmp RECV110

RECV140:

mov ax,cs ; restore data segment

mov ds,ax

Check what phase we are in. If SyncPhase, do not ack the message or

invoke the distributed runtime.

test (SYNCPHASE],OffffH ; NZ means true (sync phase)

jz RECV150

-245-

I
Distributed Issues Final Report

System is still in synchronization phase, simply tog that the message

arrived by setting the RECEIVE FLAG with the buffer descriptor

During sync phase, only one message can be recieved, so no concern

for overwriting the RECEIVEFLAG exists.

mov [RECEIVEFLAG],bx

imp End-Receive ; done receiving

Queue an ACK for the sendor then...

Call Receive portion of Distributed Runtime code to determine

what should be done with the newly arrived packet.

RECV150:

mov si,[bx] ; get beginning of buffer back I
call AckHold ; first queue an Ack message to go out ;AAA

call NET Receive

END RECEIVE: do check on buffer, if no packet there, clear interrupts

End Receive:

tds si,cs:[CARDRAM] ; source is ethernet RAM

add si,cs:[RECEIVEPTR]; add current receive buffer page address

mov ax,[si] ; fetch status into AL, NEXT PTR into AH

since we only receive good packets ignore stat

or al,aL ; see if any packet arrived (if not zero!)

iz ClearInterrupt ; go on if no data is there

imp CheckXmit

No data left, go ahead and clear receive interrupt

RACE CONDITION HERE...

ClearInterrupt:

mov dx,nicisr ; clear any pending receive interrupts

mov al,nicprx ; receive interrupt bit

out dx,aL ; clear receive interrupt (if present)

Check if we won the race...

mov ax,1O

Clio:

dec ax

jnz Clio

test byte ptr (si],OFFH see if something just arrived

Jz CheckXmit

Something just arrived, see if we can see the interrupt

in aL,dx ; get interrupt status

and al,nicprx

jnz CheckXmit ; ok, we still see the interrupt

mov at,7 ; print bell!

-246- I

Distributed Issues Final Report

call outchr ; interrupt has been Lost! due to race

mov at,'x'

calt outchr

Now check for transmit complete interrupt

Check Xmit:

mov ax,cs ; insure data segment is for DRT

mov ds,ax

mov dx,nicisr ; get interrupt status

in at,dx

and ax,nic ptx ; check for packet transmitted

jnz Transmit

No xmit complete interrupts, see if there is a ACK to go out

test [ACKHOLDING],OFFFFH ; see if any acks are waiting to go out

jz EOI ; nothing to go out

mov ax,[TX_READY] ; check if transmitter is busy

or ax,ax

jLe EOI ; stilt busy, just exit

call ACK Send ; otherwise send out one of the holding acks

imp EOI

Transmit complete, see if an ACK is waiting to go out. if so,

send it. Otherwise signal READY semaphore.

Transmit:

out dx,al ; clear the transmit interrupt

test [ACK HOLDING],OFFFFH ; see if any acks are waiting to go out

jz transmitlO

inc word ptr [TXREADY] ; give credit for transmit complete

call ACKSEND ; go issue the ack

imp EOI

Only free up transmitter if no acks waiting to go

(and out of sync phase, Note: Acks never occur during sync phase)

transmitlO:

test [SYNCPHASE],OFFFFH; if sync phase, indicate free xmitter

JZ transmit2O

mov (TXREADY],l ; by setting it ready

imp EOI

transmit20:

push cs ; segment of semaphore

lea ax,TXREADY ; offset of semaphore

push ax

call VRTIFSignat_l ; signal ready for next 10

-247-

I

Distributed Issues Final Report

; Interrupt processing has been completed. Any new interrupts that have

; come in since clearing the status bit will be recorded by the 8259

; when we enable the 3Com card interrupt mask. This creates the edge

trigger necessary for the 8259

EOI:

Clear the 8259 Interrupt Request

cli ; make absolutely sure we don't nest

mov dx,nicimr ; point to mask register

mov at,nic ptx+nicprx ; enable transmit (tx) and receive (rx) ints

out dx,al

mov at,NETEOI ; issue EOI to interrupt controller

mov dx,VRTIF 18259

out dx,al

pop es ; restore registers and flags (interrupt)

pop ds

pop di

pop si

pop dx
POP cx

pop bx

pop ax
POP bp

iret B

IOALLOCATE - Allocates next buffer from Avail List

Return BX pointing to buffer queue index. I
By design, the buffer should queue should never be empty.

Destroys AX , BX has new descriptor pointer

10 ALLOCATE:

pushf

cli

mov bx,CS:(RXBUFFHEAD] ; fetch head pointer

or bx,bx ; see if empty

jnz 10_ALLOC1O ; go on if not

Normally, might raise storage error here, but design prevents

exceeding buffer capacity unless there is some code flaw.

mov al,'M' print message

call outchr

mov aL,'T' ; and

call outchr

int 3 ; trap I

-248- I

Distributed Issues Final Report

Remove buffer descriptor from free list

IOALLOC1O:

mov ax,CS:Ebx+DEFNEXT PTR3 ; fetch next pointer

mov CS:CRXBUFFHEAD],ax ; pull buffer off list, replace head

xor axax ; null next pointer in buffer

mov CS:[bx+DEFNEXT PTR],ax

poPf

ret

IODEALLOCATE - Deallocates buffer into Avail List

Takes BX pointing to buffer descriptor.

By design, the buffer should queue should never be full.

Destroys AX

10 DEALLOCATE:

pushf

cti

mov ax,[RX_BUFF_HEAD] ; get head of List

mov [bx+DEFNEXTPTR],ax ; put behind this entry

mov [RX_BUFFHEAD],bx ; make this entry new head

popf

ret

; ACKALLOCATE - ALlocates next buffer from Free List

Return BX pointing to Ack entry.

By design, the free List should never be empty.

Destroys AX , BX has new descriptor pointer

Interrupts are disabled to maintain list consistency

ACKALLOCATE:

pushf

cti

mov bx,[ACK_FREE] ; fetch head pointer

or bx,bx ; see if empty

jz ACKALLOC1O ; if failure

Remove buffer descriptor from free list

mov ax,[bx+ACKNEXT] ; fetch next pointer

mov (ACK FREE],ax ; pull buffer off List, replace head

xor ax,ax ; null next pointer in buffer

mov (bx+ACK NEXT],ax

popf ; restore interrupts

ret

Normally, might raise storage error here, but design prevents

-249-

I
Distributed Issues Final Report

exceeding buffer capacity unless there is some code flaw.

ACKALLOC1O:

popf

mov aL,'M' ; print message

call outchr

mov at,'T' ; and

call outchr

int 3 ; trap

ACKDEALLOCATE - Deaklocates buffer into Free list

Takes BX pointing to buffer descriptor.

By design, the ack List should never be full prior to call.

Destroys AX

ACKDEALLOCATE:

pushf

cL

mov ax,[ACK FREE] ; get head of list

mov [bx+ACKNEXT],ax ; put behind this entry

mov [ACKFREE],bx ; make this entry new head
poPf

ret

ACK_ADD - Add another ack entry to the pending list

Input: BX is ack entry

ax is destroyed

AckAdd:

push si

push di

push ax ;&&& save regs

push cx I
push di

and ax,OfffH ; only use 0-4095

push ax ; push sequence # &&

call VRTIFTimestamp ; time-stamp it &&&

pop di

pop cx

pop ax ; &&& restore regs

pushf

mov ax,cs:[ACKTIMER]

add axackdetay ; number of ticks

mov cs: [bx+ACKCOUNT] ,ax

Find the end of the ack List

-250- U

Distributed Issues Final Report

Lea si,ACK_PENDING ; point to header

ackaddlO:

mov di,cs:[si] ; fetch next pointer

or di,di ; see if at end

jz ack-add20 ; jump if so

mov si,di , go down the list

imp ack-addlO

ack-add20:

mov cs:[siJ,bx ; put behind this entry

popf

pOp di

pOp si

ret

ACKREMOVE - Remove ack entry from the pending List.

THIS IS ONLY CALLED DURING RECEIVE INTERRUPT ROUTINE

SI : points to ACKNOWLEDGE PACKET BUFFER IN HARDWARE

relative to the DS segment which points to the

hardware packet buffer (NOTE: ACK's are never

unloaded from the hardware buffer).

ax,bx,si,cx destroyed

NOTE: ACK's have the SEQUENCE they are acking in the normal

sequence field.

AckRemove:

mov cx,[si+DEF-pktsequence] ; get SEQUENCE value

push ax ;&&& save regs

push cx

push di

and cx,OfffH ; only use 0-4095

push cx ; &&& push for timestamp

caLl VRTIF-timestamp ;&&&

pop di

pop cx

pop ax ; &&& restore regs

lea bx,ACK_PENDING

AckremovelO:

mov si,cs:(bx] ; get next pointer

or sisi ; exit if at end of list

jz ackremove30 ; all done (not there!!)

cmp cx,cs:[si+ackseq] ; check for matched sequence

jz ackremove25

ackremove20:

mov bx,si ; bx is always the previous pointer

-251-

I
Distributed Issues Final Report

jimp ack removelO

Found the entry, remove from pending, and place it on FREE List

ackremove25:

mov ax,cs:[si] ; get next in List

mov cs:[bx],ax ; link over removed entry

put removed node into free list

mov ax,cs:[ACKFREE] ; get head of List

mov cs:[si],ax ; put behind this entry

mov cs:[ACKFREE],si ; make this entry new head

ackremove3O:

ret

ACK_HOLD Add another ack message to the holding list

Input: SI points to received message

AckHOLD:

push bx ; save message descript-
-

call ACKALLOCATE ; fetch a free ack entry

mov ax, [si+DEF_pkt mypid] ; get pid of sender

mov [bx+ack pid],ax ; put in record

mov ax,Esi+DEF pktsequence]; fetch received Sequence #

my [bx+acktseqax stick in recordI

put at end of HOLDING list

push si

push di

Lea si ,ACK_HOLDING

ackhoLd10:

mov di,[si] ; fetch ptr

or di,di ; see if at end

jz ack hoLd2O ; jump if so 3
mov si,di ; go down the List

imp ackhotdlO

ackhotd20:

mov [siJ,bx ; put behind this entry

pOp di

pOp si ; restore received message pointer

pOp bx ; restore message descriptor

ret

ACKSEND - Transmit next acknowledge message on the HOLDING List

-252- I

Distributed Issues Final Report

NOTE: This is ONLY called during interrupt servicing when the

transmitter is available. This prevents interference with the

IO-XMIT routine above. (They both access the H/W)

; INPUTS:

The PID and SEQUENCE number to acknowledge is at the head of

the "HOLD" queue.

Acknowledgements simply have: DST, SRC, length, ACK SEQ, ACKCMD

ACKSend:

push ax save alt registers

push bx

push cx

push dx

push si

push di

push ds

push es

dec word ptr [TX_READY] ; mark transmitter as busy

Get entry off of HOLDING list

mov bx,[ACKHOLDING]

mov ax,[bx] ; get next pointer

mov (ACKHOLDING),ax ; remove tnis ACK from holding List

mov si,[bx+ackpid] ; get processor id of originator

mov dx,[bx+ack-seq] ; and sequence #

call ACKDEALLOCATE ; put on free list

Build acknowledge packet

cld ; set auto increment

les di,[CARDRAM] ; point to hardware buffer area

mov cL,3 ; 8 bytes per net table index

shl si,cl ; convert PID to net table index

Lea si,NETTABLE[si] ; fetch address of dest.

mov cx,DEFaddr size ; in words

rep movsw ; copy in dest address

mov si,(PID] ; get our processor id

mov ct,3 ; mutt by 8 (bytes/address entry)

shl si,cl ; index into address table

lea si,NETTABLE[si] fetch our address

mov cxDEF_addrsize

rep movsw ; copy in source addr

Length field is fixed to include up to command only

mov ax,DEFpkt_cmd+2

stosw put in buffer

-253-

Distributed Issues Final Report

Put ACKING Sequence Number in packet

mov ax,dx ; get acking seq number

stosw ; put in buffer

mov ax,DEFACK ; set command to ACK

stosw , stuff in buffer

That's it for Loading the packet buffer, now kick off transmission

Setup NIC registers to begin transmission

mov dx,niccr ; select Page_0

mov al,ethaccessPage_O

out dx,at

mov dx,nictpsr ; page start register

mov aL,eth xmit buf start ; transmit page at DCOO:O000

out dx,at

Load Length of packet

mov ax,minpacket ; make it is the minimum

mov dx,nictbcrO ; toad number to transfer into H/W

out dx,at

mov dx,nictbcrl

mov at,ah

out dx,aL
;start transmit

mov dx,nic cr

mov at,send ; command to initiate transmission

out dx,al

pop es

pOp ds

pOp di

pop si

pop dx

pop cx

pop bx

pop ax

ret

ACK_CHECK - Check to see if any acknowledgment requests are over

ACKLIMIT clock interrupts old. Cause shutdown if so.

INTERRUPT SERVICE ROUTINE

This routine is invoked by the runtime timer interrupt routine to

allow the network 10 funtions to be checked. As a result,

ALL REGISTERS except AX and DS MUST BE PRESERVED!!!

Note: because this routine is run every 5 mi~liseconds, it has

-254-

Distributed Issues Final Report

been optimized to take up Little time in the typical case. For

this reason, there are three exit points which are executed in

straight line code.

ACKCHECK:

mov axcs

mov ds,ax

For each communicating processor, check watch dog timer

push si

push di

push cx

mov si,[WATCHLIST]

mov cx,[si] ; get number of processor to wa:h

jcxz ACK08

add si,2

ACK05:

mov di,[si] ; get processor ID of next to watch

add di,di

dec word ptr WATCHDOG[di] ; check watch_dog

jz ACK20 ; FAILURE

add si,2

Loop ACK05

ACK08:

pOp cx

pOp di

pOp si

Now see if any outstanding messages

mov ax,[ACK_PENDING] ; get pending List

or ax,ax

jnz ACK1O ; if message on list, must check

retf

ACK1O:

push si

mav si,ax

mov ax,[ACK_TIMER] ; get current TIME

inc ax

mov (ACK_TIMER],ax ; update

cmp ax,[si+ack_count] ; see if our TIME is UP

jz ACK20

pOp si

retf ; return, still time before error

ACK20:

mov al,TIMEREOI ; clear timer channel interrupt

mov dx,VRTIF_ 18259

out dx,al

mav a[,OfdH ; shut off everything but keyboard

-255-

I
Distributed Issues Final Report

inc dx ; point to mask reg

out dx,al

xor ax,ax

push ax

call VRTIFTimestamp

imp ShutDown ; Acknowledgment timed out!

Data AREA

align 4

ISR dw ? ; interrupt status register

PACKETSIZE dw ?; packet size

CARDRAM dd OdcOOOOOOh ; address of ram buffer on enet card

RECEIVEPTR dw ? ; points to current next page to rcv

XPARMCOUNT dw ? ; number of xmit params left to copy

PROFILE PTR dw ? ; current ptr to parameter profile

SEQUENCE dw ? ; this processor's packet sequencer

NULLLIST dw 0 ; zero parameters

The following semaphore is used to provide mutual exclusion to the

transmit side of the Ethernet card.

TXREADY dw ?; semaphore count

dw ?; task value

dw ; task value

RECEIVEFLAG dw ? contains buffer desc in SYNC PHASE

BUFFER QUEUE STRUCTURE

record

; BUFFEROFFSET

NEXT_PTR I
end record; I

RXBUFFHEAD dw (?)

RXBUFFER db numnbuff dup (buff_size duo (?))

RXBUFF_0 dw numbuff dup (2 dup(?)) ; (BUFFER_PTR, NEXTDESCPTR)

; The outstanding packet acknowledgement queue contains the
; Task id and the sequence number used when transmitting

each (non-acknowLedgement) message. When an acknowlegement message

is received, this list is checked and if the ids are found,

-256- I

Distributed issues Final Report

they are removed. If they are not found, the acknowledgement is

trashed (this should not occur unless the master CPU restarts white

a stave is still transmitting an acknowledge. However, in future

versions with retry implemented, multiple acknowledgements may be

possible.

Queue structure:

• NEXT QUEUE PTR *

* TASK ID *

* SEQUENCE NUMBER *

* TIMER COUNTER *

ack delay equ 20 ; interrupts = 5 ms each

ACKTIMER dw ?

ACKFREE dw ? ;list of unused acks

ACKPENDING dw ? ;list of acks we are waiting for

ACKHOLDING dw ?; list of acks waiting to go out

ack-size equ 8 ; bytes per entry

; list structure

acknext equ 0 ; point to next in ack list

ackyid equ 2 ; processor ID of packet to be acked

ackseq equ 4 ; sequence nunber
ackcount equ 6 ; counter (used to time-out ack)

ACKRECORDS dw numbuff dup (acksize dup(?)) ; NEXT, SEQ#, COUNT

cseg ends

end

-257-

m
Distributed Issues Final Report

page 55,132

TITLE VRTIF - Vendor Runtime Interface Module

FILE: DA_VRTIF

Distributed Ada - Vendor Runtime Interface I
This module provides the addresses within the

Vendor supplied runtime for required tasking primatives.

Copyright(C) 1989, LabTek Corporation

include DADEF.ASM 3
public VRTIF_18259, VRTIF_vectorbase

public VRTIF_Wait, VRTIFSignal, VRTIFSignal_I

public VRTIFLowerPriority l
public VRTIF Create Task

public VRTIFActivateComplete

public VRTIF_Entry

public VRTIFRendezvousCompLete

public VRTIFAccept

public VRTIF Select
public VRTIF PutCh

public RTIFTimestamp

public VRTIF_TCBTID

public VRTIFAPPLICATION

public VRTIF_ Init

public VRTIF taskptr

public VRTIFDS

public VRTIF_SELECTREC

extrn CreateTask:near

extrn Activate_Comptete:near

extrn Request Entry:near

extrn Rendezvouscomplete:near

extrn Select:near

extrn Accept:near

extrn PID:word I
VRTIF_18259 equ 20H ; address of interrupt controller chip

VRTIF TCBTID equ 22 ; offset in TCB to priority (identifies task) I
VRTIFSELECTREC equ 6 ; bytes per stack record for each open

; aLternative in a select statement

far_jmp_instructiorn equ OOOEAH jmp intersegment

retf2_instruction equ OCAO2H ; return intersegment pop two bytes

retfinstruction equ OOOCBH ; return far

shortcallinstruction equ OCOE8H ; short caLL

I
-258- I

Distributed Issues Final Report

; NOTE: During start up (COLD START) the vector base is that of DOS. After

; runtime intitialization has completed it is moved to 200H. However, this

; occurs after the network initialization, and the vectors in plat, at 20H

; are moved to 200H. Subsequent restarts are "WARM" and do not effect any

; of the interrupt vector tables.

VRTIFvector base equ 20H ; Initial base of vector table (DOS)

VRTIF segment at DEFVRTIFADDR

org 0 ; this is just for convience

VRTIFDS label word ; actually in different segment

org 970H ; offset in RT DS

VRTIFTASKPTR Label word ; offset in DS for current task

RUNTIME TASKING CALLS ADDRESSES TO ALLOW VECTORING TO THE DISTRIBUTED

Ada RUNTIME

org 11DAH

RIAccept label far ; simple accept

org 12C1H

RIEntry label far ; simplecaLtentry uncond

org 13F3H

RIRendezvousCompete label far ; rendezvouscomplete

org 1476H

R1Activated label far ; activated

org 161CH

RlCreateTask Label far ; createtask

org 1D28H

RISelect label far ; select

org 2608H

VRTIFSETPRIORITYLOWER labeL far

org 39BRH

VRTIFPutCh [abet far ; putcharacter

org 3CCEH ; timestamp

VRTIF_Timestamp Labet far

org 40FOH ; patch for short calls to set priority

PATCH_40FO label far

org 519BH

-259-

Distributed Issues Final Report

VRTIF_Signatl I Label far ; R1TESI?VI V semaphore operation (interrupt)

org 51DOH
VRTIFWait Label far ; R1TESS?P P semaphore operation (non interrupt)

org 51E6H
VRTIFSignat label far ; R1TESS?V V semaphore operation (non-interrupt)

VRTIF ends

APPLICATION ENTRY ADDRESS l

vrtif2 segment at 537411

org 6

VRTIFAPPLICATION label far I
vrtif2 ends

cseg segment commnonI
assume cs:cseg,ds:cseg,es:cseg

org 1100H

p-ch in calls to distributed runtime to allow runtime checking

ol distribution.

V'RTI r - i t:I
mov axDEFVRTIF-ADDR ; segment for Vendor Runtime

mov es,ax

Crc ate Task

tea di,Rlcreatetask

mov byte ptr es:(di],far_jmp_instruction
inc di

Lea ax,CreateTask

mov es:(dij,ax

add di,2

mov axcs

mov es:[di],ax

Activate Complete

tea di,RlActivated

mov byte ptr es:[di],far_jmpinstruction

inc di

tea ax,ActivateComptete

mov es:[di],ax

add di,2
mov axles

mov es:(di],ax

-260-

Distributed Issues Final Report

entry calls

tea di,Rlentry
may byte ptr es: (di],far imp instruction
inc di
Lea ax,RequestEntry

may es:Cdi],ax

add di,2
may ax,cs

may es:EdiJ,ax

;end rendezvous

lea di ,R1rendezvouscoampLete
may byte ptr es: Edi),far imp instruction
inc di

Lea ax,Rendezvous_Complete
may es:(diJ,ax

add di,2
may ax,cs

may es:(di],ax

Select

Lea di,RlSetect
may byte ptr es: (di],far imp instruction
inc: di

tea ax,Select

may es:(di],ax

add di,2
may ax,cs
may es:EdiJ,ax

Accept

tea di,RlAccept
may byte ptr es:[diJ,farjrmpinstruction

inc di

Lea ax,Accept
may es:[dij,ax

add di,2
may ax,cs

may es:(di],axc

SETUP special short call transfer area at end of patch for setting
the priority

tea di,PATCH_40F0
may byte ptr es:(di].short_calL[instruction
may word ptr es:(di+1],offset VRTIFSETPRIORITYLOWJER-(PATCH_40F0+3)
may byte ptr es: (di+3],retf instruction

If this is not the master, do not use PutChar ... must patch

-261-

Distributed Issues Final Report

i t out.

test CS: [PlO],OFFFFh master is always zero

jZ Init 10

Lea di, VRTIFPutChI
mov word ptr es:[di] retf2_instruction

mov byte ptr es:[di+2],O ; high half of count

Int1-mov ax,cs restore data segment

mov ds,ax

ret

assume ds:VRTIF

VRTIF_Accept:

mov ds, [VRTIFOS]

mov si,(VRTIFTASKPTR]

imp RlAccept+B

VRT IFEntry:

mov ds,[VRTIF OS]I
Mov si,[VRTIFTASKPTR)

imp RlEntry+8

VRTIF Rendezvous_Coplete:

rnov ds,[VRTIF OS]

Mov si,[VRTIFTASK_-PTR]

imp~ Rlrendezvousconptete+8

VRTIFActivateComplete:

mov ds, (VRTIF OS]I
mov si,[VRTIF_TASK_-PTR]

imp~ Rlactivated+8

VRTIFCreateTask:

push bp

may bp,sp

mov ds,(VRTIFOS]

VRTIFSeLect:

push bp
may bj, sp
mov ds,(VRTIFOS]

imp~ Rlsetect+7

VRTIFLowerPriority:

call Patch 40F0

ret

-262-

Distributed Issues Final Report

cseg ends

end

-263-

Distributed Issues Final Report

page 55,132

TITLE DCB - Distributed Task Control Block Module

FILE: DADTCB.ASM

DA - Distributed Task Control Block Module

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA

Ver Date Description

0.2 Dec-89 : Enhanced to support error detection and dynamic

; configuration

include DADEF.ASM

.model large

public DTCBINIT

public SYNCHROSEMAPHORE

public CONTINUE SEMAPHORE

public TASK-DIRECTORY

public proc_table_size

public REMOTE CPU TABLE

public NAMETABLE

public WATCHLIST

public WATCHDOG

extrn MODESELECT:word

extrn PID:word

cseg segment common

assume cs:cseg,ds:cseg,es:cseg

org OAOOH

Task Control Blocks

Semaphore 3 words

Reply Pointer 1 word

Return Address 2 words

Num Entries 1 word

Entry Table N * 3 words (where N is the nuier of entries)

Profile Ptr 1 word

Wait Flag 1 word

Entry Queue 2 words

-264-

Distributed Issues Final Report

Profile List:

Number of Parameters 1 word

Mode 1 word ("in", "out", "in out")

Type/Length 1 word (negative means unconstrained)

The TCB contains a synchronize semaphore which is used to

suspend itself and wait for a signal from another task.

This is followed by a reply pointer used to hold the buffer

descriptor of the message to which a reply is due. Then

the entry information is provided. This begins with the number

of entries for this task, followed by a record for each entry.

Each entry record contains:

- A profile pointer which provides the offset within the CS for

information on the parameter profile for this entry.

- A waiting flag used by the accep'ing task to indicate that it

has suspended waiting for a call on this entry (and possibly

others).

- A buffer List Pointer, This points to the buffer descriptor

for the first caller to this entry. The buffer descriptor

provides the actual buffer address and a link to the next

descriptor. This provides the FIFO queue for each entry.

semaphore struc

dw 3 dup (?)

semaphore ends

TCBINIT Initialize Distributed Task Control Blocks

DTCBInit:

xor axax

mov [SYNCHROSEMAPHORE],ax

mov [SYNCHROSEMAPHORE+2],ax

mov [SYNCHROSEMAPHORE+4],ax

mov [CONTINUESEMAPHORE],ax

mov [CONTINUESEMAPHORE+2],ax

mov (CONTINUESEMAPHORE+4],ax

Initialize Distributed Task Directory Based on Current Operating Mode

This caLLs the mnitTCB for each task to initialize its structures.

INITDIRECTORY:

mov si,[MOOE_SELECT] ; fetch mode

dec si ; model => offset 0

add sisi ; make word index

mov si,MOOETABLE[si] ; fetch address of mode values

-265-

I
Distributed Issues Final Report

mov cx,totaLtasks I
Lea di,TASKDIRECTORY

mov ax,ds

mov es,ax

xor ax,ax

ctd

INITDIRLOOP:

movsw ; transfer Local/distrib flag

movsw ; transfer PID

mov bx,[di] ; get TCB pointer

caLL InitTCB

add di,2 ; skip the distrib TCB pointer

stosw ; zero counter for tasks of this type

Loop INITDIRLOOP

InitiaLize Watch Dog Timer Information based on configuration and

this processor's ID

mov ax,[PID]

mov bx,DEF-maxcpus*2 ; bytes per cpu entry

muL bx

mov bx,ax ; BX = cpu offset

mov ax,[MODE_SELECT]

dec ax ; adjust by one to make zero origin

mov dx,(DEF-maxcpus*DEF max cpus) * 2 ; bytes per mode table

muL dx

mov si,ax

lea si,WATCHTABLErsi+bx] ; get address of watch List entry

mov [WATCH LIST],si ; set value for other's use I
mov cx,[si] ; fetch number of timers to init

jcxz Watch init done

add si,2

Watch Init:

may bx,[si] ; fetch PID of processor to watch

add bx,bx

mov WATCHDOG[bx],DEFWATCHDOGLIMIT ; init timer for this pid

add si,2

loop Watch init

Watchinit done:

ret

Init_TCg : zero aLL semaphore words and entry table values tor the TC8

pointed to by:

INPUT: BX points to TCB of interest

t TAX contains zero
Init-TCB:

or bx,bx ; does this task have a TCB?

-266- I

Distributed Issues Final Report

jz InitTCB_30 ; exit if not applicable

mov [bx],ax ; clear semaphore

nWV Ebx+2],ax

mov [bx+4J,ax

push cx

mov cx,[bx+DEF numentries] ; fetch number of entries

Lea bx,DEFentry table[bx]

jcxz InitTCB_20 ; if no entries

Init TCB_10:

mov DEF entrywait[bx],ax ; zero wait flag

mov DEFentryqueue[bx],ax ; zero buffer descriptor

mov DEFentryqueue+2[bx],ax ; zero next pointer

add bx,size DEFentry-rec ; go to next record

loop InitTCB_10

InitTCB_20:

pop cx

InitTCB_30:

ret

align 4

Configuration Mode Control

THESE TABLES WOULD NORMALLY BE PROOUCED BY A CONFIGURATION CONTROL

TOOL, BUT FOR PROTOTYPE PURPOSES THEY ARE GENERATED BY HAND.

The current configuration control allows for four different

operating modes and three processors (alpha, bravo, and chartie):

MODE 1 : ALL tasks are on the alpha processor

MODE 2 : ALL BDS tasks are on alpha, all simulator tasks are on bravo.

MODE 3 : ALL BDS tasks are on alpha, all simulator tasks are on charLie.

MODE 4 : All BDS tasks except one of the guidance tasks is on alpha,

the simulator is on bravo, and one guidance task is on charlie

The mode (below) is initialized during system startup. The master

processor asks the operator which mode to use. If a system failure

occurs, the master shuts down the system and brings it back up as

a single processor version. Note that a system function:

Configuration Table - for each task, the location is defined in terms

of current operating mode.

MODETABLE label word

dw offset MODE1

dw offset MOOE2

dw offset MODE3

dw offset MODE4

-267-

I
Distributed Issues Final Report

; TASK LOCATION DIRECTORY because of Lack of compiler

; support, very little information is available to uniquely correlate

; tasks during runtime calls. As a workaround, unique priorities

; are used for each task type, and counters are supplied for multiple

; tasks within the type which modify the identification with respect

; to the task priority. In this way, each task can be quickly correlated

to its distributed characteristics at runtime.

The following directory contains entries for each task and is indexed

by task priority. The entries are:

<LOCAL/DISTRIBUTED FLAG> <PID> <DIST-TCB-PTR> and <spare>

The LOCAL/DISTRIBUTED FLAG indicates if all entry calls are local. :f

one is d'stributed, they must all go through the distributed runtime,

even if the call being made is local. <PID> is the processor that the

task is resident on. For calls being made through the distributed

runtime, additional task control information is located by the pointer

DISTTCBPTR.

This directory is initialized during configuration time based on

operator or automatic mode selection. The first two values are

set according to mode, the last two are statically defined.

TASKDIRECTORY label word

dw 4 dup (0) dumy to offset 32

dw ?". SAVETCB, ? ;(12)save 31

dw ?,?, DISPLAY_TCB ? ;(11)display 30

dw ?,? TRACK DATTCB, ? ;(10)trackdata 29

dw ?,? REPORTBUFTCB, ? ;(09)report buf 28

dw ?,? GUIDEBUFTCB, ;(08)guide_bu 27

dw ?,? ROCKSUPTCB, I ;(07)rocksup 26

dw 7,? TARGSUPTCB, ? ;(06)targsup 25

dw 7,? CONTROL_TCB, ? ;(05)control 24

dw ? GUIDANCE1_TCB, ? ;(04)guidance(1) 23

dw ? GUIDANCE2_TCB, ? ;(03)guidance(2) 22

dw ? TRACK TCB, ? ;(02)track 21

dw ? UPDATZTCB, ? ;(O1)update 20

dw ? MAINTCB, ? ;(O0)bds 19

total tasks equ (S-TASKDIRECTORY)/8 ; must follow definitions above

local ent ies equ 0

dist entries equ I

For each mode (of four) the locaL/distrib flag must be set and the pid

must be set. I

-268- I

Distributed Issues Final Report

MODEl Label word

DISTRIBUTED ,PID

dw 2 dup (0) ;dummiy to offset priority by one

dw local _entries, DEFalpha ;(12)save

dw Local _entries, DEFatpha ;(11)display

dw Local_entries, DEFa~pha ;(10)track data
dw Locak_entries, DEFalpha ;(09)report -buf

dw Local _entries, DEFatpha ;(08)guidebuf

dw locai_entries, DEFatpha ;(07)rock sup

dw LocaL entries, DEFatpha ;(06)targ sup

dw Local_entries, DEFa~pha ;(05)controt

dw Local_entries, DEFalpha ;(04)guidance(l)

dw 0, DEF_NA ;(03)guidance(2)

dw local _entries, DEFa~pha ;(02)track

dw local _entries, DEFatpha ;(01)update

dw Local_entries, DEFalpha ;(0D)bds

MODE2 Label word

DISTRIBUTED PID

dw 2 dup (0) ;dummvy to offset priority by one
dw Local _entries, DEFa~pha ;(12)save

dw Local_entries, DEFatpha ;(11)display

dw Local_entries, DEFalpha ;(lD)track data

dw dist entries, DEF-bravo ;(09)report_buf

dw dist entries * DEF-brz.io ;(08)guidebuf

dw I~ncal_entries, DEF -bravo ;(07)rock sup

dw dist entries, DEF-bravo ;(06)targ sup
dw Local ~cntries, DEFalpha ;(05)controt

dw Local entlies, DEFa~pha ;(04)guidance(l)

dw 0, DEF_NA ;(03)guidance(2)

dw local_entries, DEFalpha ;(02)track

dw local _entries, DEFa~pha ;(D1)update

dw Local entries, LEFatpha ;(00)bds

MODE3 label word

DISTRIBUTED ,PlO

dw 2 dup (0) ;dummiy to offset priority by one
dw Local entries, DEFa~pha ;(12)save

dw locaL entries, DEFatpha ;(11)display

dw LocaL _entries, DEFa~pha ;(10)track -data

dw dist_.entries, DEF -chartie ;(09)report -buf
dw dist entries, DEF _ charlie ;(08)guidebuf

dw local _entries, DEF -charlie ;(07)rock sup

dw dist entries, DEF -charlie ;(06)torg sup

dw Local entries, DEF-alpha ;(05)control

dw local _entries, DEFa~pha ;(04)guidance(1)

-269-

Distributed Issues Final Report

dw 0, DEFNA ;(03)quidance(2)

dw Local-entries, DEFatpha ;(02)track

dw locaL-entries, DEFa~pha ;(01)update

dw local -entries, DEFatpha ;(00)bds

MOOE4 Label word

DISTRIBUTED ,P10

dw 2 dup (0) ;durny to offset priority by one

dw Local-entries, DEFa~pha ;(12)save

dw local-entries, DEFaipha ;(11)display
dw local-entries, DEFa~pa ;(1O)track -dataI
dw dist -entries, DEF-bravo ;(09)report -buf

dw dist -entries, DEF-bravo ;(08)guide -buf

dw local -entries, DEF_bravo ;(O7)rock supI
dw dist entries, DEF-bravo ;(O6)targ sup

dw local-entries, DEFalpha ;(O5)controt

dw dist entries, DEF-charLie ;(O4)guidance(l)

dw local entries, DEFalpha ;(O3)guidance(2)I

dw local-entries, DEFaipha ;(02)track

dw local-entries, DEFa~pha ;(Ol)update

dw local-_entries, DEFatpha ;(OO)bdsU

Task Control Blocks

-------------------------------------I -------------
Main TCB semaphore K

dw 7 ; Reply Pointer

dw 2 dup (?) ; Return AddressI
dw 0 ; Number of Entries

Targsup-TCB SEMAPHORE <

dw ? reply

dw 2 dup (); Return Address
64 1num of distributed entriesI

DEFentryrec <offset Next_TargetMsg,?,?,?>

NextTargetMsg dw 1 ;Iparameter = TARGET_MSG_TYPE

dii DE FOUT ; mode =out

dii 802 ; only allow 50 targets for now!

RocksupTCB SEMAPHORE <>I

dw ? reply

dw 2 dup (); Return Address

dii 0 ; um of distributed entries

-270-

Distributed Issues Final Report

GuidebufICB SEMAPHORE <

dw ? reply

du 2 dup ; Return Address

dw 2 ;num of distributed entries

0EF entry rec <offset Put-Guide,?,?,?>

DEF_entry rec <offset GetGuide,7 7 7>

PutGuide dw 1 ; 1 parameter

dw DEFIN ; in mode

dw 122 ; 0 bytes

GetGuide dw 1 ; 1 parameter

diw DEFVOUT ; out mode

dw 122 ; if bytes

Reportbuf_TCB SEMAPHORE <

dw ? ;reply

dw 2 dup (); Return Address

dw 2 ;nun of distributed entries

0EF_entry rec <offset Put -Report,?,?,?3,

0EF entry rec <offset Get-Report,?,?,?>

Put_Report dw 1 ; 1 parameter

dw 0EV IN ; in mode

dw 322 ; #f bytes

Get_Report dw 1 ; 1 parameter

dw DEVOUT ; out mode

dii 322 ;# bytes

TrackICR SEMAPHORE <

dw ? ; reply

dw 2 dup V?) ; Return Address

dw 0 ; nun of distributed entries

ControL _ICR SEMAPHORE <

dw ? ; reply

dw 2 dup V?) ; Return Address

dii 0 ; nun of distributed entries

Guidancel _rCB SEMAPHORE (

dw ? ; reply
dw 2 dup V?) ; Return Address

dw 2 ; nun of distributed entries
0EV-entry_rec <offset History,?,?,?>

0EV_entry rec <offset NextGuidance,?,?,?'

History dii 1 ;1 parameter

-271-

Distributed Issues Final Report

dw DEF_ IN ; mode is in

dw -1 ; unconstrained

NextGuidance dw 1 ; 1 parameter

dw DEFOUT ; mode is out

dw -1 ; unconstrained

Guidance2_TCB SEMAPHORE <>

dw ? ; repty

dw 2 dup (?) ; Return Address

dw 2 ;num of distributed entries

DEFentry rec <offset History,?,?,?>

DEFentryrec <offset NextGuidance,?,?,?>

SAVE TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup () Return Address

dw 0 ;num of distributed entries

DISPLAY TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (7) ; Return Address

dw 0 ;num of distributed entries

TRACKDATTCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 0 ; num of distributed entries

UPDATETCB SEMAPHORE <>

dw ; reply

dw 2 dup (?) ; Return Address

dw 0 ;num of distributed entries

; These semaphores are used for synchronization of tasks among aLt

; processors during program startup.

SYNCHROSEMAPHORE dw 3 dup (?)

CONTINUE-SEMAPHORE dw 3 dup (?)

PROCESSOR TABLE: Given the Mode, the number and pids are provided

fields: # of remote CPU's, CPU1-ID, CPU2-ID

proctabLe_size equ 6 ; bytes per entry

REMOTE CPU TABLE label word

-272-

Distributed Issues Final Report

dw 0, DEFNA, DEF_NA

dw 1, DEF_bravo, DEF_NA

dw 1, DEFcharlie, DEF_NA

dw 2, DEF_bravo, DEFchartie

NAME TABLE label word

dw offset ALPHANAME

dw offset BRAVONAME

dw offset CHARLIE NAME

ALPHANAME db 'Atpha',O

BRAVONAME db 'Bravo',O

CHARLIE NAME db 'Charlie',O

, :::::::::::::::::: :::::::::::::: ,,::::h::: : ... h ;;uh,,, ... huh...

; Watch Dog Timer Data : These Structures determine which processors

; to monitor for activity as a function of processor ID and mode.

align 2

; The following table contains a block 'or each mode, which contains

; an entry for each processor. Each entry :ontains a count, followed

; by the PIDs to watch- This table defines which processors communicate

; with each other during the various modes.

Watchtable entrysize equ 8

WATCH-TABLE label word

;MODE1 -- no processors to watch

dw 0,DEF_NA, DEF_NA ; PID 0

dw 0,DEFNA, DEF NA ; PID 1

dw 0,DEFNA, DEF_NA ; PID 2

;MOOE2

dw 1,DEFbravo,DEFNA ; PID 0

dw 1,DEFatpha,DEF_NA ; PID 1

dw 0,DEFNA, DEF_NA ; PID 2

;MOOE3

dw 1,DEFcharLie, DEFNA ; PID 0

dw 0,DEFNA, DEFNA ; PID 1

dw 1,DEF_alpha, DEFNA ; PID 2

;MOOE4

dw 2,DEF bravo, DEF chartie ; PID 0

dw 1,DEF_apha, DEF NA ; P ID1

dw 1,DEF_alpha, DEFNA ; PI0 2

WATCH_LIST dw ? ; points to list for current config

WATCH-DOG dw DEFmax_cpus dup (7) ; table of timers

cseg ends

end

-273-

Distributed Issues Final Report

THIS PAGE INTENTIONALLY LEFT BLANK.

-274-

Distributed Issues Final Report

page 55,132

TITLE Setup - Distributed Ada Network Initialization

; FILE: DASETUP.ASM

; Distributed Ada - Setup

; This module initilizes the network to prepare for distributed

; processing.

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT. USA

.model large

public Setup

public PID ; processor ID

public NETTABLE ; addresses indexed 8 per PID

include DAHW.ASM

cseg segment common

assume cs:csegds:cseg,es:cseg

org 1COOH

Setup:

mov dxcntri ; Gate array controller

mov aLeth enable reset

out dxal

mov alethdisabte_reset

out dxal

mov at ,eth access.prom

out dxaL

mov cx,6

mov axcs

mov esax ; set es:di to receive board

mov di,offset BOARD ADDRESS : address from prom

mov dx,prom address_0

cId

GETADDRESS:

in aL,dx

stosb

inc dx

loop GET ADDRESS

mov dx,cntrt ; select no-sharing adapter,

mov at,ethrecvsetect ; and external transceiver

out dx,al

mov dxgacfr ; 8K of memory mapped space,

mov alethtan config ; with interrupts enabled

out dxat

mov dx,dqtr ; # of bytes to transfer on

mov al,eth remDMA burst ; a remote DMA burst (n/a)

-275-

I
Distributed Issues Final Report

out dx,ai

mov dx,idcfr ; interrupt IRO and DMA

mov al,ethirq tine ; channel selection (DMA n/a)

out dx,at

mov dx,damsb ; 8k configuration for remote

mov at,eth rem DMA config ; DMA. Not used, but minimum

out dx,at ; value needed

mov dx,pstr ; start of receive buffer.

mov atethrecv bufrstart ; Value MUST match that in

out dx,al ; NIC_pstart

mov dx,pspr ; end of receive buffer.

mov at,ethrecv bufend ; Value MUST match that in

out dx,at ; NIC_pstop

mov dx,NIC cr ; stop NIC activity I
mov at,eth nic stop

out dx,at

mov dx,NIC_dcr ; Local DMA transfers as

mov aL,eth nicDMAconfig ; 8 byte bursts

out dx,al

mov dxNIC_rbcrO ; remote DMA setup (remote

mov ateth_remoteDMA_to ; DMA not used, only local

out dx,aL ; used)

mov dx,NICrbcrl ; hi byte of # of bytes to

mov at,eth remoteDMA hi ; transfer during a remote

out dx,at ; DMA operation

mov dx,NIC_rcr ; accept only good packets

mov at,eth_packettypes I
out dx,at

mov dx,NIC_tcr ; go into internal toopback
mov at,ethnic_mode ; mode to finish programming

out dx,al ; (see anomalies - p. 52)

mov dx,NIC_bndy ; overwrite protection rgtr.

mov at,eth bndystart ; (protects unread packets)

out dx,al

mov dx,NIC pstart ; start of receive queue

mov at,ethrecv buf start

out dx,aL

mov d ,NICpstop ; end of receive queue

-276- I

Distributed Issues Final Report

mov at,ethrecv_buf_end

out dx,at

mov dxNICisr ; clear interrupt status

mov aL,eth int status

out dx,at

mov dx,NICimr ; disable interrupts

mov aL,ethints disabted ; for receive and xmit

out dx,at

mov dx,NIC_cr ; access page 1 registers

mov at,ethaccess_.page_l

out dx,aL

mov dx,physaddressO ; Let NIC know its address

mov axcs

mov ds,ax

mov si,offset BOARD_ADDRESS from the prom

cid

mov cx,6 ; number of addresses to give

GIVE ADDRESS:

todsb

out dx,aL

inc dx

loop GIVE-ADDRESS ; toad aLL addresses

mov dx,NIC_curr ; Load current receive pointer

mov aL,eth_recvbuf_start ; with pstart

out dx,aL

mov dx,NICcr ; access page 0 registers

mov at,eth_accesspage_O

out dx,al

mov dx,NIC cr ; start NIC chip

mov aLeth startnic

out dx,at

mov dx,NIC_tcr ; exit internal Loopback mode

mov al,eth_exit_mode

out dx,aL

Note: The RAM initialization is necessary for the mutti-packet processing

done in the receive interrupt routine

mov ax,net_n-mory seg ; initialize LAN memory to

mov es,ax ; zeroes

mov cxnetmemory size/2 ; in words

xor di,di , start at begin of segment

cid

-277-

Distributed Issues Final Report

mov ax,O000 ; initialization value

FILL:

stosw

Loop FILL

; Now check our address against the known Ethernet addresses to determine

; our processor ID

mov ax,cs

mov es,ax ; ds already = cs

mov bx,O ; init processor ID

mov di,offset NET TABLE

ctd ; search direction = increment
Search:

push di ; save start of current net addr

mov cx,3 ; three words per address

mov si,offset BOARD ADDRESS

repe cmpsw

pop di ; restore current table index

jz Found

add diP ; go to next index

inc bx ; count processor id

cmp bx,NET_COUNT ; see if aLL searched

jnz Search ; loop back if more

If not found, it will return processor id = NETCOUNT

Found:

mov (PID],BX ; record Processor ID

ret ; done with Setup

align 2

VALID PROCESSOR ID's Determined by Ethernet ADDRESS

0 -ALPHA

1 -BRAVO

2 - CHARLIE

PID dw ? , Processor ID

BOARD_ DDRESS db 6 dup (?) ; holds board address

PROCESSOR STATION ADDRESS TABLE

NETCOUNT equ 6 , number of processor on net

NET-TABLE Label byte

db 02H, 60H, 8CH, 47H, 61H, 82H,0,0 ; processor Alpha 0 EARTH

db 02H, 60H, 8CH, 47H, 63H, 55H,0,0 ; processor Bravo 1 VENUS

-278- I

Distributed Issues Final Report

d~b 02H, 60H4, 8C14, 48H4, 51H4, 60H4,0,0 ; processor Charlie 2

d~b 0214, 60H4, 8C14, 58H4, 35H4, 68H4,0,0 ; processor Delta 3

db 02H4, 60H4, 8CH, 0214, 00OH, 58H4,0,0 ; processor Echo 4

d~b 02H4, 6014, 8C14, 4414, 52H4, 09H4,0,0 ; processor Foxtrot 5

cseg ends

END

-279-

Distributed Issues Final Report

page 55,132

TITLE Sync - Distributed Ada Network Synchronization

; FILE: DASYNC.ASM

; Distributed Ada - Setup I
; This procedure varies depending on the processor type (master/slave)

; and the operational phase (SyncPhase vs. normal). Durin;

; SYNCPHASE, the vendor runtime is not used at all (ie. no tasking)

; and a wait Loop is u .ed to detect incoming packets. Since it is

; likely that messages will be Lost during SYNCPHASE, a different

; protocol is used which does not specifically utilize ACK messages. I
; Instead, resend and Long time-outs are used to synchronize. A

; "Cold_Start" command is used here to definitively restart the system.; I
; During normal operation, the master sends a "sync_start" and waits

; for a "sync ready" from each slave. Then it sends a "synccontinue"

; to continue with processing (all processors have syncrhonized).

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT. USA

.model Large I
include DA DEF.ASM

public Sync

MODULE

extrn MASTER:word ; (da)

extrn SYNCPHASE:word ; (da)

extrn NUMROCKETS:word ; (da)

extrn NUMTARGETS:word ; (da)

extrn MODESELECT:word ; (da) I
extrn Print:near ; (da)

extrn Shutdown:near ; (da)

extrn SYNCHROSEMAPHORE:word ;(dtcb) I
extrn CONTINUFSEMAPHORE:word ;(dtcb)

extrn RECEIVEFLAG:word ;(io)

extrn TXREADY:word ;(io)

extrn 10_Dealtocate:near ;(io)

extrn 1OXmit:near ;(io)

extrn VRTIF-WAIT:far ;(vrtif)

extrn proc_tabte_size:abs I
extrn REMOTE CPU TABLE:word

extrn NAMETABLE:wurd

cseg segment common

assume cs:cseg,ds:cseg,es:cseg 1

-280- I

Distributed Issues Final Report

org 2100H

Sync:

push ax

push bx

push cx

push dx

push si

push di

push ds

push es
test [MASTER],OFFFFH ; are we a master?

jnz SynclO ; imp if master
jmp slave ; no, go act Like a slave

SynclO:

test LSYNC_PHASE),OFFFFH are we in sync phase

jnz MasterSync

jmp Master Normal

MASTER SYNC PHASE:

synchronize with slave processors and send them configuration

information.

MasterSync:

mov [MASTERSYNCDATAPTRI,cs ; first setu" Parameter Data Pointer

mov ax, [NUMROCKETS] ; toad Configui Jo.. Record

mov [CONFIG.ROCKETS] ,ax

mov Lx,[NUM TARGETS]

mov [CONFIG.TARGETS] ,ax

mov ax, [MODE SELECT)

mov [CONFIG.SELECT] ,ax

dec ax ; adjust model => 0

mov [RETRY COUNT],DEFretrytimes ; initialize retry counter

mov dx,proc_tabtesize ; number of bytes per entry (ax=mode)

mul dx ; compute address

lea si,REMOTECPUTABLE

add si,ax ; index to proper selected mode

mov .REMOTEINDEX],si ; save index into table

mov cx,[si] ; fetch number of processors

mOV [CPU-COUNT],rx : rmaining CPUS to process

add si,2 : skip nf number

mov [CPU_PTR],si ; save pointer to current CPU

or cx,cx

jnz MSPIO ; if there are some remote CPUs

jmp Sync90 ; if none

MSPO:

-281-

Distributed Issues Final Report

Lea si,crlf

call Print

imp Shutdown

Sync occured, print notification and Go on to next processor in List

MSP30:

mov bx,[RECEIVEFLAG] ; get buffer pointer
caLl 10Deallocate ; return buffer

tea si,Success

call Print

Lea si,crlf

call Print

mov si,[CPUPTR] ; get CPU pointer

add si,2

mov [CPU PTR],si ; update

dec [CPU COUNT] ; count down
jz MSP35 ; continue if done with loop

jmp MSP1O ; otherwise Loop back

Now AlL processors have "checked in". Send them each a "continue"

MSP35:

lea siSyncCompLete

call Print

mov si,(REMOTE_INDEX] ; get index into table back

Mov cx,[si] ; fetch number of processors

mov [CPUCOUNT],cx ; remaining CPUS to process

add si,2 ; skip of number

mov [CPUPTR],si ; save as current CPU pointer

MSP40:

test [TXREADY],OFFFFH ; make sure the transmitter is free

jle MSP40 ; wait if not

sub sp,6 skip parameter stuff

lea ax,MASTER_CONTINUE PROFILE ; profile

push ax

sub sp,6 ; skip MYTID, ENTRY, and TID

mov ax,DEFsync continue ; command

push ax

push [si] ; processor ID of destination

call 1OXmit ; send message

mov si,[CPUPTR] ; get CPU pointer

ndd si,2

mov (CPUPTR] ,si ; update

dec (CPU COUNT] ; count down

jnz MSP40

-283-

I
Distributed Issues Final Report

Wait for Last transmit complete interrupt

MSP5O:

test [TXREADY],OFFFFH ; make sure the transmitter is free i
jLe MSP5O ; wait if not

jmp Sync90 ; done

;MASTER NORMAL PHASE : runtime synchronization after configuration setup

just synchronize with stave processors

Master Normal:

mov ax,[MODE_SELECT] i
dec ax ; model => 0

mov dx,proctable size ; number of bytes per entry (ax=mode)

muL dx ; compute address

Lea si,REMOTE CPUTABLE I
add si,ax ; index to proper selected mode

mov [REMOTEINDEX],si ; save index into table

mov cx,[si] ; fetch number of processors I
mov [CPUCOUNT],cx ; remaining CPUS to process

add si,2 ; skip of number

mov [CPUPTR],si ; save pointer to current CPU

or cx,cx

jnz MNP1O ; if there are some remote CPUs

jmp Sync90 ; if none
MNPIO:I

sub sp,6 ; skip parameter stuff

Lea ax,MASTERCONTINUEPROFILE ; no parameters

push ax

I;My TID

sub sp,6 ; skip ENTRY, and TID

mov ax,DEFsyncstart ; com and

push ax I
mov si,[CPUPTR] ; get cpu pointer back

push [sf1 ; processor ID of destination

call lOXmit ; send message I
Now wait for a reply

push cs
tea ax,SYNCHROSEMAPHORE

push ax

call VRTIF_Wait ; do a wait

Sync occured, Go on to next processor in list

MNP30:

mov si,[CPUPTR] ; get CPU pointer

-284- I

Distributed Issues Final Report

add si,2

mov [CPUPTR],si ; update

dec [CPUCOUNT] ; count down

jz MNP35 ; continue if done with Loop

imp MNP1O ; otherwise Loop back

Now ALL processors have "checked in". Send them each a "continue"

MNP35:

mov si,[REMOTEINDEX] ; get index into table back

mov cx,[si] ; fetch number of processors

mov (CPU_COUNT] ,cx ; remaining CPUS to process

add si,2 ; skip of number
mov (CPUPTR],si ; save as current CPU pointer

MNP40:

sub sp,6 ; skip parameter stuff

Lea ax,MASTERCONTINUE_PROFILE ; profile

push ax

sub sp,6 ; skip MY_TID, ENTRY, and TID

mov ax,DEF_synccontinue ; command

push ax

push [si] ; processor ID of destination

call 10_Xmit ; send message

mov si,(CPUPTR] ; get CPU pointer

add si,2

mov [CPU PTRI,si ; update

dec [CPUCOUNT] ; count down

jnz MNP40

imp Sync9O ; DONE

Stave:

test [SYNC PHASE],OFFFFH see if initial sync phase

jnz StaveO5

imp StaveNormal

SlaveO5:

Lea si,Stavesync

caLt Print

.... ooo....... ooo o° oo II , # °.oIooo°.oo.°

SLAVE SYNC MODE

wait for configuration information

StavelO:

test [RECEIVEFLAG],OFFFFH ; see if incoming data

jz StavelO

We got a message, check the command for "start"

mov bx, [RECEIVEFLAG]

-285-

1
Distributed Issues Final Report

mov (RECEIVEFLAG,O ; zero for next time

mov si,[bx] ; fetch buffer ptr

cmp word ptr [si+DEFpktcmd],DEFcotd start ; is this a START

jz Stave20

Must be some other traffic, ignore it!

caLL 10_Deatocate ; free up buffer

jimp StavelO I

Got a vaLid Cold Start... respond!

SLave20:

lea si,Esi+Defpkt_data] point to data area of packet buffer 1
mov ax,[si+ROCKETS] ; unload Configuration Information

mov [NUMROCKETS] ,ax

mov ax, [si+TARGETS]

mov [NUMTARGETS],ax

mov ax,(si+SELECT]

mov [MODCESELECT],ax

calL IODealLocate

SLave30:

test [TXREADY],0FFFFH make sure the transmitter is free 1
ite SLave30 ; wait if not

sub sp,6 ; skip parameter stuff

Lea ax,SLAVEREADY_PROFILE ; profile

push ax

sub sp,6 ; skip MY_TID, ENTRY, and TID

mov ax,DEFsync ready ; command

push ax

xor ax,ax ; PIO of master is always zero

push ax

caLl 10_Xmit ; send message

Lea si,Success

call Print

Now wait for Continue

Stave40:
test [RECEIVEFLAG],OFFFFH ; see if incoming data

jz Stave4O

We got a message, make sure it is continue

mov bx,[RECEIVE FLAG]
mov [RECEIVEFLAG],O ; clear for next time
mav si,[bx] ; get buffer pointer

cmp word ptr [si+DEFpkt_cmd],DEFsynccontinue ; is this a CONTINUE?

-286- I

Distributed Issues Final Report

jz Stave50

Must be some other traffic, deaLLocate buffer, and check for another cold

start.

caLL IODeattocate ; free up buffer

cmp word ptr [si+DEFpktcmd],DEFcotd_start ; COLD START?

jnz Slave4O ; if not, simply ignore it

imp SLavelO ; if so, start aLt over

Stave synchronization has completed, deaLLocate buffer and exit

SLave5O:

caLL 10Deattocate ; free up buffer

jmp Sync90

SLAVE NORMAL MOOE

Wait for "Start" semaphore, issue "ready" then wait for "continue"

SLaveNormaL:

push cs ; push address of Semaphore

Lea ax, SYNCHROSEMAPHORE

push ax

caLL VRTIF Wait ; do a wait

issue a "ready" message

sub sp,6 ; skip parameter stuff

Lea ax,SLAVEREADYPROFILE ; profile

push ax

sub sp,6 ; skip MYTID, ENTRY, and TID

mov ax,DEF_syncready ; command

push ax

xor ax,ax ; PID of master is always zero

push ax

caLL OXmit ; send message

push cs

Lea ax,CONT INUESEMAPHORE

push ax ; wait for the "go ahead"

caLL VRTIFWait

; all done
S ync90:

mov [SYNCPHASE],O ; NO Longer in Sync Phase!

pop es

pop ds

pop di
POP si

pop dx

-287-

Distributed Issues Final Report

POP cxI
POP bx

POP ax
ret

a Lign 4

MASTERSYNCPROFILE dw I ; provide I param: config record

dw DEF-IN ; mode in

dw 6 number of bytes in record

MASTER SYNC DATA-PTR dw ? ;segment addressI

dw offset CONFIG

MASTERCONTINUEPROFILE dw 0 ; no parameters

SLAVE READY PROFILE dw 0 ; no parameters

CONFIG RECORD strucI
ROCKETS dw ?; NUMROCKETS

TARGETS dw ? ; NUMTARGETS

SELECT dw ?; MODESELECT

CONFIG RECORD ends

CONFIG CONFIGRECORD <

RETRY COUINT dw ?

CPU3COUNT dw ?
CPU PTR dw ?

REMOTE-INDEX dw ?

Attempt db 13,1O,'Trying To Sync With: '.03

Failure db Synchronization Failed',O

Success db ' Synchronization Succeeded',O

SyncCo41pLete db 13,1O,'SYNCHRONIZATION COtPLETED',13,1O,O

crLf db 13,10,0

Period db F .10

Stave sync db 'Stave Mode, Trying to Synchonize...2,03

cseg ends

END3

-288-

Distributed Issues Final Report

page 55,132

TITLE Setup - Distributed Ada Network Initialization

; FILE: DA_SETUP.ASM

; Distributed Ada - Setup

; This module inititizes the network to prepare for distributed

; processing.

Copyright(C) 1989, Labiek Corporation, Woodbridge, CT. USA

.model Large

public Setup

public PID ; processor ID

public NETTABLE ; addresses indexed 8 per PID

include DAHW.ASM

cseg segment common
assume cs:cseg,ds:cseg,es:cseg

org iCOOH

Setup:

mov dx,cntrt ; Gate array controller

mov at,eth_enabte_reset

out dx,at

mov al,ethdisabte_reset

out dx,al

mov aL,ethaccessprom

out dx,al

mov cx,6

mov ax,cs

mov es,ax ; set es:di to receive board

mov di,offset BOARDADDRESS ; address from prom

mov dx,prom address_0

ctd

GET ADDRESS:

in aL,dx

stosb

inc dx

Loop GET ADDRESS

mov dx,cntrt ; select no-sharing adapter,

mov ateth_recv_seLect ; and external transceiver

out dx,aL

mov dx,gacfr ; 8K of memory mapped space,

mov at,eth_ tan config ; with interrupts enabled

out dx,al

mov dx,dqtr ; # of bytes to transfer on

mov aLethremDMAburst ; a remote DMA burst (n/a)

-289-

Distributed Issues Final Report

out dx,al

nxqv dxidcfr ; interrupt IRO and DMA

nov at,eth irqLine ; channel selection (DMA n/a)

out dx,at

mov dx,damsb ; 8k configuration for remote

mov aleth remDMA config ; DMA. Not used, but minimum

out dx,aL ; value needed

mov dx,pstr ; start of receive buffer.

mov at,ethrecv bufstart ; Value MUST match that in

out dx,at ; NlC_pstart

mov dx,pspr ; end of receive buffer.

mov at,ethrecv bufend ; VaLue MUST match that in

out dx,al ; NIC_pstop

mov dx,NICcr ; stop NIC activity

mov al,eth nic stop

out dx,al

mov dx,NIC-dcr ; local DMA transfers as

mov aLethnicDMA config ; 8 byte bursts

out dx,al

mov dx,NICrbcrO ; remote DMA setup (remote

mov al,ethremoteDMAIo ; DMA not used, only local

out dx,at ; used)

mov dx,NICrbcrl ; hi byte of # of bytes to

mov at,eth remote DMA hi ; transfer during a remote
out dx,al ; DMA operation

mov dx,NIC rcr ; accept only good packets

mov al,eth packet types

out dx,at

mov dx,NIC tcr ; go into internal loopback
mov al,ethnic mode ; mode to finish programming

out dx,at ; (see anomalies - p. 52)

mov dx,NICbndy ; overwrite protection rgtr.

mov at,ethbndystart ; (protects unread packets)

out dx,al

mov dx,NIC pstart ; start of receive queue

mov at,ethrecvbuf start

out dx,aL

mov dx,NICjpstop ; end of receive queue

-290-

Distributed Issues Final Report

mov al,eth_recvbufend

out dx,aL

mov dx,NIC isr ; clear interrupt status

mov at,ethintstatus

out dx,aL

mov dx,NICimr ; keep interrupts off

mov aL,ethints-disabted

out dx,at

mov dx,NIC-cr ; access page 1 registers

mov at,ethaccesspage_l

out dx,at

rnov dx,physaddressO ; let NIC know its address

mov axcs

mov ds,ax

mov si,offset BOARDADDRESS from the prom

cLd

mov cx,6 ; number of addresses to give

GIVEADDRESS:

todsb

out dx,aL

inc dx

Loop GIVE-ADDRESS ; Load aLL addresses

mov dx,NIC curr ; load current receive pointer

mov al,eth_recv buf start ; with pstart

out dx,aL

mov dx,NIC_cr ; access page 0 registers

mov at,ethaccesspageD

out dx,at

mov dx,NICmcr ; start NIC chip

mov aleth startnic

out dx,aL

mov dx,NIC_tcr ; exit internal Loopback mode

mov aL,ethexitmode

out dx,aL

mov axnet memoryseg ; initialize LAN memory to

mov es,ax ; zeroes

mov cx,net memorysize/2 ; in words

xor di,di ; start at begin of segment

cLd

mov ax,O000 ; initialization value

FILL:

stosw

-291-

Distributed Issues Final Report

Loop FILL

; Now check our address against the known Ethernet addresses to determine

; our processor ID

nov axcs

mov es,ax ; ds already = cs

mov bx,O ; init processor ID

mov di,offset NETTABLE

cid ;search direction = increment

Search:I
push di ; save start of current net addr

mov cx,3 ; three words per address

mov si,offset BOARDADDRESS
repe cmpsw

pop di ; restore current table index

jz Found

add di,8 ; go to next index

inc bx count processor id

cmp bx,NETCOUNT ; see if all searched

jnz Search loop back if more

If not found, it wilt return processor id = NETCOUNT i
Found:

mov [PID],BX ; record Processor ID

ret ; done with Setup

align 2

VALID PROCESSOR ID's Determined by Ethernet ADDRESS

S0 -ALPHA

1- BRAVO

2 -CHARLIE

PID dw ? ; Processor ID

BOARD-ADDRESS db 6 dup (?) ; holds board address I
PROCESSOR STATION ADDRESS TABLE

NETCOUNT equ 6 ; number of processor on net

NET-TABLE label byte

db 02H, 60H, 8CH, 47H, 63H, 55H,0,0 ; processor Bravo 1 VENUS

db 02H, 60H, 8CH, 47H, 61H, 82H,0,0 ; processor Alpha 0 EARTH
db 02H, 60H, 8CH, 48H, 51H, 60H,O,O ; processor Charlie 2I
db 02H, 60H, 8CH, 58H, 35H, 68H,0,0 ; processor Delta 3

db 02H, 60H, 8CH, 02H, OOH, 58H,0,0 ; processor Echo 4

-292- l

Distributed Issues Final Report

do 02H, 60H, 8CH, 44H, 52H4, 09H,0,0 ; processor Foxtrot 5

cseg ends

END

-293-

I
Distributed Issues Final Report

page 55,132i

TITLE DA - Distributed Ada Module

FILE: DA.ASM i
DA - Distributed Ada Module

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA

* I

This code is code that would be part of the runtime system, but

must be Linked in to replace some part of the regular runtime

routines. It is Linked to the runtime via (hand) editing.

; Since the compiler does not supply information

; on the parameters in the code (it is implicitly maintained by I
; the compiler amoung entry call/accept pairs), tables are placed

; here to provide the information.

Each packet header is statically formed and placed in this

module to be reference by the TRANSMIT CONTROL PTR (TCP) used in

; the rurtime call parameter List. This reduces the overhead
; associated with packetizing the data. These packet headers
; could be generated by the compiler/Linker/distributor and

; optimally would be placed in the controller card menry at

; elaboration time so that Loading of header data would be

; necessary.

Ver Date Description

0.1 Nov-88 : Initial prototype

0.2 Dec-89 : Enhanced to support error detection and dynamic I
; configuration

include DADEF.ASM

.model large

public Shutdown ; prints out msg, and restarts

public COLDSTART ; NZ if this i. cold start

public MOOESELECT ; Selected Operating Mode

public SYNCPHASE ; During startup to synchronize CPUs

public Print ; for sync printout
public MASTER ; for sync

public NUMTARGETS ; for sync Config set

public NUMROCKETS ; for sync Config set

extrn Initialize:near (rte)

-294- I

Distributed Issues Final Report

extrn AckCheck:near (io)

extrn Sync:near ; synchronize procedure

extrn VRTIFAPPLICATION:far ; (vrtif)

extrn VRTIF 18259:abs ; (vrtif)

extrn DTCBINIT:near ; (dtcb)

extrn PID:word processor id (Setup)

cseg segment common

; BIOS Vectors

intlO equ 40H

intl6 equ 58H

initialimask equ OFDH ; mask off all but keyboard

da-base equ 3000H ; segment for da runtime

uppercase equ ODFH ; mask for upper case characters

EGAROMSEGMENT equ OCOOOH

ROM PRESENT equ OAA55H

STACKSIZE equ 200 ; bytes in Local stack

MAX_ROCKETS equ 20 ; B0S maximum # rockets

MAX-TARGETS equ 50 ; BDS maximum # targets

MAXMODE equ 4 ; BDS maximum mode value

ERROR_DELAY equ 70H ; delay roughly 5 seconds

FLOPPYSTOP equ OCH ; Shuts off motors

FLOPPYDIGITAL equ 3F2H ; address of digital ctrl reg.

assume cs:cseg,ds:cseg,es:cseg

The following jump table provides (static) control transfers from the

Ada aoplication code to the respective support code located here

align 8 ; O0

jimp Restart ; prior to elaboration

aLign 8 ; 08

jmp AckCheck ; Check on Acknolwedgment of Messages

align 8 ; 10

jmp Get Master ; Returns a boolean if this is the master

align 8 ; 18

imp GetRockets ; Returns the number of Rockets Configured

align 8 20

imp GetTargets ; returns the number of Targets Configured

align 8 ; 28

jmp GetTasks ; returns the number of Guide Tasks Configured

align 8 ; 30

test word ptr cs:[EGA_PRESENT],OFFFFH

jz No EGA

imp dword ptr cs:[BIOSVIDEO] ; vector to current EGA Location

No-EGA: iret ; simply skip any EGA activity

-295-

I
Distributed Issues Final Report

Restart to initialize the network hardware and configure the system 3
Restart:

mov cs:(AUTO,O ; clear auto configure mode

Error-Restart: 3
cli

mov dxVRTIF_18259+1 ; address of interrupt mask register

mov at,5nitiat-imask ; initial interrupt mask

out dx,at ; set mask

SETUP TEMPORARY STACK

mov ax,seg sseg

mov ssax

mov ax,STACK_SIZE

mov sp,ax

call clear @@ this is fix for compiler bug

SETUP DATA SEGMENT

mov ax,cs

nov ds,ax

CHECK COLDSTART FLAG

test (COLDSTART],OFFFH

jz Warm start

COLD START ... FIRST RELOCATE TO SEGMENT 3000

mov axda_base ; first move stack segment

mov es,ax ; save for later relocation of code/data

mov cx,cs
sub ax,cx ; compute diff between load and base addr

mov cx,ss ; now adjust stack segment

add ax,cx

mov ss,ax

mov cx,8000H

mov si,OFFFEH

mov di,OFFFEH

std auto decrement

rep movsw

cLd

mov ax,dabase

mov ds,ax

push ax

lea ax,continue

push ax m

-296- I

Distributed Issues Final Report

retf switch to 3000: segment

I Shut off floppy motor

continue:

mov at,FLOPPYSTOP

mov dx,FLOPPY DIGITAL

out dx,aL

; Get BIOS Vectors

mov ax,O

mov esax ; point to zero page

mov ax,es:[intlO]

mov word ptr (BIOS VIDEO],ax

ov ax,es:[intlO+2]

mov word ptr [BIOSVIDEO+2],ax

mov ax,es:[intl6]

ov word ptr [BIOS_KB],ax

mov ax,es:Eintl6+2]

ov word ptr [BIOSKB+2],ax

mov ax,EGA ROM SEGMENT

mov es,ax

cmp word ptr es:[O],ROM_PRESENT

jnz warmstart ; if not present Leave flag zero

ov [EGA_PRESENT],1 ; otherwise set flag

Warm-Start:

call Initialize ; Initialize Ethernet Board

ov [SYNC PHASE],1 ; set synchronization phase

cmp [PID],O ; see if we are the master

jz MasterCPU ; go on if master

imp Slave

if here, this is the master processor with a console

MasterCPU:

mov [MASTER],1 ; indicate this is the master

test [FAILURE],OFFFFH ; see if display already setup

jnz skip display

call SetDispLay

skipdisptay:

mov [FAILURE],O ; default is no failure (for next time)

sti ; enable interrupts now for master mode
test CAUTO],OFFFFH ; see if in auto reconfiguration mode

jnz Automatic

call Configure ; perform Configuration

imp TCBsetup

Automatic:
call AutoConfigure

I -297-

I

Distributed Issues Final Report

imp TCBSetup go on and setup tasks

if slave mode, do not attempt to configure, this is

done during the SYNCPHASE sync procedure

Slave:

mov [MASTER],O ; indicate THIS is not a master

sti ; enable interrupts for sLave mode

TCBSetup:

Determine number of Guidance Tasks

call Sync ; perform a synchronize

mov si,[MOOESELECT) ; get selected mode

dec si ; model => offset 0 I
add sisi ; double for word index

mov ax,GUIDETABLE[si]

mov [NUMTASKS],ax ; set number of tasks

caLL DTCBInit ; Initialize Task/Processor Directory

Go execute AppLication Code

mov [COLDSTART],O ; FINISHED WITH INITIALIZATION!

imp VRTIFAPPLICATION I

CONFIGURE - This routine sets the distributed system configuration

Configure:

mov si,offset ANNOUNCE

call Print

caLL Get-Char

and aLuppercase

call PutChar ; Echo Response

cmp al,'Y'

jnz Configure
rockOO:I

mov si,offset ROCKETQUES

caLL Print

caLL GetNum

or ax,ax

jte rock error

cmp ax,MAXROCKETS

jte rock20

rock error:

mov si,offset BAD-ROCKETS

caLL Print

jimp rockOO

rock20:

-298- I

Distributed Issues Final Report

mov [HUMROCKETS] ,ax

trO:mov si,offset TARGET QUES

call Print

call Get Num

or ax,ax

jte targ error

cnp ax,MAXTARGETS

ie targ2a

targ error:

mov si,offset BADTARGETS

call Print

tag2:ip targOO

mov (HUMTARGETS],ax

modeOO:

may si,offset MODEDUES

call Print

call Get N umn
or ax,ax

jte mode -error

cnp ax,MA MODE

jte mode2O
mode-error:

may si,offset BAD-MODE

call Print

imp~ modeO

mode20:

may (MODESELECT],ax ; establish mode

may si,offset AUTOQUES ;see if auto reconfiguration desired

call Print

call Gct Char
and at,upper case

call Put Char

cnp aL,'Y'
jnz auto-no

may (AUTO] ,1

may si,offset DELAYDUES ;if auto, check if delay desired

call Print

call GetChar

and al,upper case

call Put Char

cnp al,'Y'

jnz deLay no

may (DELAY1,1
imp config done

auto-no:

-299-

I
Distributed Issues Final Report

mov [AUTO],O shut off automatic mode

delayno:
mov [DELAY],O

configdone:

ret

AUTO-CONFIGURE - This routine sets the distributed system configuration

; using an automatic allocation algorithm. I
Auto-Configure:

mov [ODESELECT],1 ; for now, default to uniprocessor

test [DELAY],OFFFFH ; see if we should delay

jz autolO ; if fast reconfigure requested

Lea si,DELAYMSG I
call Print

mov ax,ERRORDELAY

call DELAY-LOOP
autolO:

ret

Delay Loop: I
xor cx,cx

delay looplO:

loop delay looplO

dec ax

jnz detay_tooplO

retI

SHUTDOJN - Causes a message to be displayed indicating a network

error, and then jumps to Restart

This routine is entered only by the ACKCHECK service, therefore all

interrupts are currently disabled.

Shut Down:

cli
mav dx,VRTIF_18259+1 ; address of interrupt mask register

mov at,initiaLtimask ; initial interrupt mask

out dx,at ; set mask

mov axcs

mov ds,ax

mov [FAILURE],1 ; indicate we have a failure

mov dx,O3CEH ; @@ straighten out display

mov at,5

out dx,at

mav dx,O3CFH

-300- I

Distributed Issues Final Report

mov aLO

out dx,aL

caLL SetDispLay ; make sure display of all bits

Lea si,NET_ERROR

call Print

imp ErrorRestart

Get-Master
GetMaster:

push ds

mov axcs

mov ds,ax

mov ax, [MASTER]

POP ds
retf

Get Rockets

GetRockets:

push ds

mOV axcs

mov dsax

mov ax, [NUM_ROCKETS]
pop ds

i retf

GetTargots

Get_Targets:
push ds

mov axcs

mov dsax

mov ax, [NUM_TARGETS]

pOp ds

I retf

GetTass , , ,,,...... ,, ,,

GetTasks
Get_Tasks:

push ds

mov axcs

mov ds,ax

mov ax, (NUMTASKS]

pop ds

I retf

S•;PRINT - print string pointed to by SI until null

I -301-

I

Distributed Issues Final Report

BIOS-WRITE equ 09h ; write color/attribute

PAGE-SELECT equ 0

COLOR equ lfH ; background blue, forground red

WINDOWTOP equ O000H ; row=O col=O

WINDOWBOTTOM equ 184fH ; row=24 coL=79

SCROLL equ 0601H ; scroll up 1 row

CLEAR-DISPLAY equ 0600H ; scroll 0 = clear screen

GETCURSOR equ 0300H

SETCURSOR equ 0200Hm

cr equ OOOdH

if equ OOOaH

bs equ 0008

index_reg equ 03ceH ; EGA index control register

displayselect equ 5
modeO equ 0

mask select equ 8 ; select mask register

mask bits equ OffH ; turn all bits on

sequencereg equ 03C4H

mapmask equ 2 I
SetDisplay - insures that the display bit mask has all bits turned on.

This is only necessary when switching from bit grahics I
modes where typically only one bit is enabled.

SetDisplay:

test word ptr [EGAPRESENT],OFFFFH

jnz SetDispiaylO

ret
SetOisptaylO:

mov ax,2

pushf

call dword ptr [BIOSVIDEO]

mov ax,CLEAR DISPLAY

mov cx,WINDOWTOP

mov dxWINDOWBOTTOM

mov bh,COLOR

pushf ; push flags (simulate INT 10H)

call dword ptr (BIOS-VIDEO]

ret

mov dxindexreg

mov at,disptay_select I
out dx,al

inc dx point to data register

mov al,modeO

out dx,al

I
-302- I

IDistributed Issues Final Report

Imov dx,index_reg

mov atmask_select

; out dx,at

; inc dx point to data register

mov at,maskbits set mask

out dx,al

mov dx,sequence_reg

; mov at,mapmask

out dx,at

; inc dx

; mov atmask_bits
; out dx,at

ret

; Print - write text pointed at by SI until null (0) is encountered

Print:

cLd

printlO:
t odsb

or at,at ; end of string?

jz print_end

caLL Put-Char ; SIOS .aLL preserves direction flag

imp PrintlO

print-end:

ret

Put Char- writes character in AL on screen

Put Char:

test word ptr [EGA_PRESENT],OFFFFH ; see if screen

jnz Put charlO

ret

Put CharlO:

push ax

cmp aL,cr ; Carriage return?

jz put charcr

cmp altf ; line feed

jz putchar_If

cmp atbs ; back space

jz putchar_bs

mov ah,BIOSWRITE

mov bhPAGESELECT ; select page

mov bi,COLOR ; set color

mov cx,1 ; 1 character

pushf ; push flags (simulate INT 1OH)

-303-

Distributed Issues Final Report

call dword ptr [BIOSVIDEO)

may ax,GETCURSOR

mov bh PAGE_SELECT

push f
call dword ptr (BIOSVIDEO]

mov ax,SETCURSOR

may bhPAGE_SELECT

inc di move cursor over

push f

call dword ptr [BIOS -VIDEO]

imp PutChar-end

put char_cr:

may ax,GETCURSOR

moy bhPAGE_SELECT

pushf

call dword ptr (BIOSVIDEO]

mov ax,SETCURSOR

may bhPAGE_SELECT

mov dL,O ;reset columni

pushf

call dword ptr [BIOSVIDEO]

imp Put-char-end

put char_ Lf:

may ax,GETCURSOR ;see if at bottom of screen

may bhPAGE_SELECT

push f

call dword ptr (BIOSVIDEO]

cwP dh,24 ;at bottom?

jz put char IflO

inc dh ;if not at bottom of screen, just go

may ax,SETCURSOR ;down 1 more Line

may Ni ,PAGESELECT

pushf

call dword ptr (BIOSVIDEO]

jap Put-char-end

put chartf 10:

may ax,SCROLL ;if at bottom, then scroll

may cx,WINDOU TOP

may dxWINDOWBOTTOM

may bh,COLOR

pushf ;push flags (simulate INT 1OH)

call dword ptr (BIOS_-VIDEO]

imp Put-char-end

put char..bs:

3 4

Distributed Issues Final Report

may ax,GETCURSOR

May bh ,PAGESELECT

pushf

call dword ptr [BIOS-VIDEO]

may ax,SETCURSOR

may bh PAGE_SELECT

or dl,dL; see if aLready at Left margin

jz put_char_bs2

dec dl; adjust columni

pushf

call dword ptr [BIOSVIDEO]

put char_bs2:

j-p Put-char-end

put char end:

POP ax

ret

GET_KB equ 0 ;read character (synchronous)

GetChar:

may ax,GETKB

push f

call dword ptr [BIOSKB]

,ret

Accepts a number from console

Returns with AX having value (0 if blank Line entered)

GetNun:

call Get Line

may si,offset LINE-BUFF

may ax,O ; init value

may bx,1O ; decimal numb~ers

may ch,O ; high byte

Get-numlO0:

may cl,(si]

inc si

cnp cl,cr ; see if end of Line

jz Get -nun2O
cnp cti, ; also terminate on space

jz Get -nun2O

cnp cl,'O'

jI get_nun-error

cnp cl,'9'

jg get num error
nmut bx

and cL,OfH

add ax,cx

-305-

Distributed Issues Final Report

imp Get numlO

Get-numerror:
mov si,offset Input_Error

caLl Print

imp GetNum

Get num2O:

ret

Get_Line - fetches Line from keyboard until <CR> is entered

returns with Line in LINEBUFF terminated by <CR>

Get-Line:

mov si,offset LINEBUFF

get_LinelO:

cmp si,offset ENDOFLINE

jz get_Linecr ; force a <CR>

call Get Char

cmp aL,bs ; backspace?

jz getinebs

cmp aL,cr

jz get_tine_cr

mov Esi],aL

inc si

caLL Put Char

imp getLinelO

get_tinebs:

cmp si,offset LINEBUFF

iZ get_LinelO ; do nothing if at begin of Line

call Put Char

mov aL,,

call Put-Char

mov aL,bs

call PutChar

dec si ; back up buffer pointer

imp getLinelO

get_Line_cr:

mov aLcr

mov [si],aL

caLL PutChar

mov at,Lf

call Put-Char

ret

CLEAR - routine to zero some of memory to compensate for code

generator error.

CLear:

-306-

Distributed Issues Final Report

mov ax,951bH

mov es,ax

xor ax,ax

mov cx,ax

mov diax

cId

rep stosw

ret

align 4

BIOS Actual Routine Addresses

BIOSVIDEO dd ?

BIOS KB dd ?

EGA-PRESENT dw 0 ;default is not present

CONFIGURATION INFORMATION SUPPLIED TO THE APPLICATION

...... DE DE.. •o...............D •. , ,DD •DD•

MASTER dw ? NZ if this is the master CPU

NUN_ROCKETS dw ?; max number of rockets to Launch

NUN TARGETS dw ?; max number of targets to generate

NUN_TASKS dw ?; number of GUIDANCE tasks

Indexed by mode

GUIDE TABLE dw 1 ; mode 1 = 1 guide task

dw 1 ; mode 2 = 1 guiue task

dw 1 ; mode 3 = 1 guide task

dw 2 ; mode 4 = 2 guide tasks

OPERATION CONTROL VARIABLES

COLD START dw 1 cold start=1 if first time through

SYNC-PHASE dw ? ; initial synchronization phase

MODE SELECT dw ? , selected operating mode

AUTO dw 0 ; default is not automatic mode

DELAY dw 0 ; if a delay before restart is desired

FAILURE dw 0 ; if a network failure occured

TEXT INPUT/OUTPUT DEFINITIONS

LINE-BUFF db 256 dup (?)

ENDOFLINE equ $-1

ANNOUNCE db cr,lf,lf

-307-

I
Distributed Issues Final Repoi-t

db ' T H E 3 0 R D E R D E F E N S E'

db cr,lf,Lf

db ' D IS T R I BUT E D Ada

db 'C 0 N F I G U R A T I 0 N M E N U',cr,Lf,tf,Lf

db 'Type ''Y'' to continue: ',0 I
ROCKETQUES db cr,tf,lf,'Enter Number Of Rockets=> '0

TARGET QUES db cr,Lf,tf,'Enter NuIber of Targets=, ',0

MODEQUES db cr,Lf,Lf,'SELECT MODE:',cr,tf

db ' 1 = SingLe Processor',cr,Lf

db ' 2 = Dual (AB) Processor',cr,Lf

db ' 3 = Dual (AC) Processor',cr,if

db ' 4 = Triple Processor',cr,lf

db 'MODE => '1,0

AUTOQUES db cr,lf,Lf,'Automatic Reconfiguration? (Y) I'D

DELAYQUES db cr,Lf,Lf,'Detay before Reconfiguration? (Y) : ,0

BADROCKETS db cr,tf,'Out Of Range!, Rockets must be between 1 and 20'

db cr,Lf,tf,'Reenter: ',0

BADTARGETS db cr,Lf,'Out Of Range!, Targets must be between 1 and 50'

db cr,Lf,Lf,'Reenter: ',0

BADMODE db cr,Lf,'Out Of Range!, Mode must be between 1 and 4'

db cr,Lf,tf,'Reenter: 1,0

INPUTERROR db cr,[f,'Invatid Number' I
db crtf,'Reenter: 1,0

NETERROR db Lf,Lf,' N E T W 0 R K T R A N S M I S S I 0 N 3
db 'E R R 0 R 0 E T E C I E D !',cr,Lf,tf,O

DELAYMSG db 'SYSTEM WILL RESTART IN FIVE SECONDS...',cr,Lf,lf,0

cseg ends I
sseg segment STACK

db STACKSIZE dup (0)

sseg ends

end

I
I
I
I
I

-308- I

I
I Distributed Issues Final Report

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -309-

